“双碳”背景下我国稻田生态系统土壤固碳潜力分析

白龙龙, 盛雅琪, 徐丽丽, 高翔, 张涌新, 邓劲松

中国工程科学 ›› 2024, Vol. 26 ›› Issue (6) : 246-256.

PDF(857 KB)
PDF(857 KB)
中国工程科学 ›› 2024, Vol. 26 ›› Issue (6) : 246-256. DOI: 10.15302/J-SSCAE-2024.06.023
工程前沿

“双碳”背景下我国稻田生态系统土壤固碳潜力分析

作者信息 +

Carbon Sequestration Potential of Paddy Soil in China under the Carbon Peaking and Carbon Neutrality Goals

Author information +
History +

摘要

稻田生态系统作为人为耕作条件下形成的土壤生态系统,具有较高的固碳能力和潜力,对我国农业领域实现“双碳”目标具有重要意义。本文基于遥感技术提取2021年的我国水稻种植区信息,构建了5995个图斑模拟单元,应用反硝化 ‒ 分解(DNDC)模型模拟了2021—2040年全国稻田表层土壤有机碳(SOC)密度的空间分布情况,预测了我国未来稻田SOC的变化趋势。结果表明,在现有种植条件下全国稻田土壤呈现碳汇状态,2021年的稻田表层土壤(0~20 cm)碳储量平均值为4.1 Pg C, 2030年、2040年的对应值分别为4.32 Pg C、4.49 Pg C,稻田土壤碳储量表现为逐年上升趋势;2021—2030年的稻田土壤的固碳潜力为22 Tg C/a,2030—2040年为17 Tg C/a,年均变化率趋缓,稻田土壤固碳潜力逐渐达到饱和状态。未来20年,我国绝大部分地区的稻田SOC密度将出现变化,增加面积明显高于下降面积,最高增长率为9.2%,最大下降率为8%。情景模拟表明,秸秆还田、化肥施用可显著提高稻田土壤的碳储量。相关结论在充分利用稻田土壤的碳汇功能、降低温室气体排放、推进农业领域“双碳”目标等方面具有科学意义和应用价值。

Abstract

The paddy ecosystem, as a unique soil ecosystem formed by artificial cultivation, holds great potentials for carbon sequestration, which is crucial for realizing the carbon peaking and carbon neutrality ("dual carbon") goals in the agricultural sector of China. This study constructs 5995 simulation units using the rice planting area information acquired through remote sensing in China in 2021. Subsequently, it uses a denitrification-decomposition (DNDC) model to simulate the spatial distribution of surface soil organic carbon (SOC) density in fields in China from 2021 to 2040, and predicts the future trend of the SOC. Results of the study indicate that the paddy soil in China exhibits a carbon sink under the current planting conditions. The average carbon storage of the surface paddy soil (0~20 cm) in China was 4.10 Pg C in 2021 and will be 4.32 Pg C in 2030 and 4.49 Pg C in 2040; the carbon storage will increase year by year. The carbon sequestration potential of paddy soil in China will be 22 Tg C‧a-1 during 2021—2030 and 17 Tg C‧a-1 during 2030—2040; the average annual growth rate will slow down, and the carbon sequestration potential of soil will gradually reach saturation. In the next two decades, the SOC density of paddy fields in most regions of China will change, and the increased areas will be significantly greater than the decreased areas, with a maximum growth rate of 9.2% and a maximum decrease rate of 8.0%. Scenario simulations indicate that straw returning and fertilizer application could significantly increase the carbon storage in paddy soils. These findings hold scientific significance and practical values in fully utilizing the carbon sink function of paddy soils, reducing greenhouse gas emissions, and advancing the "dual carbon" goals in the agricultural sector.

关键词

稻田生态系统 / 土壤碳储量 / 固碳潜力 / DNDC模型 / 情景模拟

Keywords

paddy ecosystem / carbon storage in soil / carbon sequestration potential / DNDC model / scenario simulation

引用本文

导出引用
白龙龙, 盛雅琪, 徐丽丽. “双碳”背景下我国稻田生态系统土壤固碳潜力分析. 中国工程科学. 2024, 26(6): 246-256 https://doi.org/10.15302/J-SSCAE-2024.06.023

参考文献

[1]
Food and Agriculture Organization of the United Nations. Greenhouse gas emissions from agrifood systems: Global, regional and country trends, 2000—2020 [EB/OL]. (2022-04-11)[2024-07-15]. https://openknowledge.fao.org/server/api/core/bitstreams/121cc613-3d0f-431c-b083-cc2031dd8826/content.
[2]
邸超, 李海波‍. 稻田碳减排措施研究进展 [J]. 现代农业科技, 2023 (14): 17‒20.
Di C, Li H B. Research progress on carbon emission reduction measures in paddy fields [J]. Modern Agricultural Science and Technology, 2023 (14): 17‒20.
[3]
刘天奇, 胡权义, 汤计超, 等‍. 长江中下游水稻生产固碳减排关键影响因素及技术体系 [J]. 中国生态农业学报(中英文), 2022, 30(4): 603‒615.
Liu T Q, Hu Q Y, Tang J C, et al. Key influencing factors and technical system of carbon sequestration and emission reduction in rice production in the middle and lower reaches of the Yangtze River [J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 603‒615.
[4]
Zomer R J, Bossio D A, Sommer R, et al. Global sequestration potential of increased organic carbon in cropland soils [J]. Scientific Reports, 2017, 7(1): 15554.
[5]
赵明月, 刘源鑫, 张雪艳‍. 农田生态系统碳汇研究进展 [J]. 生态学报, 2022, 42(23): 9405‒9416.
Zhao M Y, Liu Y X, Zhang X Y. A review of research advances on carbon sinks in farmland ecosystems [J]. Acta Ecologica Sinica, 2022, 42(23): 9405‒9416.
[6]
Liu Y L, Ge T D, van Groenigen K J, et al. Rice paddy soils are a quantitatively important carbon store according to a global synthesis [J]. Communications Earth & Environment, 2021, 2: 154.
[7]
钱海燕, 于婷婷, 周杨明, 等‍. 基于DNDC模型的稻田生态系统碳动态模拟研究进展 [J]. 华中农业大学学报, 2022, 41(6): 59‒70.
Qian H Y, Yu T T, Zhou Y M, et al. Progress on carbon dynamics simulation of paddy ecosystem based on DNDC model [J]. Journal of Huazhong Agricultural University, 2022, 41(6): 59‒70.
[8]
Jiang Z H, Zhong Y M, Yang J P, et al. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production [J]. Science of the Total Environment, 2019, 670: 210‒217.
[9]
Qin Z C, Huang Y, Zhuang Q L. Soil organic carbon sequestration potential of cropland in China [J]. Global Biogeochemical Cycles, 2013, 27(3): 711‒722.
[10]
Smith P, Soussana J F, Angers D, et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal [J]. Global Change Biology, 2020, 26(1): 219‒241.
[11]
郭然, 王效科, 逯非, 等‍. 中国草地土壤生态系统固碳现状和潜力 [J]. 生态学报, 2008, 28(2): 862‒867.
Guo R, Wang X K, Lu F, et al. Soil carbon sequestration and its potential by grassland ecosystems in China [J]. Acta Ecologica Sinica, 2008, 28(2): 862‒867.
[12]
张钊, 辛晓平‍. 生物地球化学模型DNDC的研究进展与碳动态模拟应用 [J]. 草地学报, 2017, 25(3): 445‒452.
Zhang Z, Xin X P. Research progress of biogeochemistry model DNDC in carbon dynamic modeling [J]. Acta Agrestia Sinica, 2017, 25(3): 445‒452.
[13]
肖玉涛, 李正鹏, 宋明丹, 等‍. 基于DNDC模型长期复种翻压绿肥对土壤有机碳和小麦产量的模拟 [J]. 草业科学, 2024, 41(2): 332‒344.
Xiao Y T, Li Z P, Song M D, et al. Simulation of soil organic carbon and wheat yield by long-term multiple cropping and rolling green manure based on DNDC model [J]. Pratacultural Science, 2024, 41(2): 332‒344.
[14]
Zhang L M, Zhuang Q L, He Y J, et al. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China [J]. Geoderma, 2016, 275: 28‒39.
[15]
Ding W H, Chang N J, Zhang G L, et al. Soil organic carbon changes in China's croplands: A newly estimation based on DNDC model [J]. Science of the Total Environment, 2023, 905: 167107.
[16]
Xu S X, Shi X Z, Zhao Y C, et al. Carbon sequestration potential of recommended management practices for paddy soils of China, 1980—2050 [J]. Geoderma, 2011, 166(1): 206‒213.
[17]
Yin S, Zhang X X, Lyu J Y, et al. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: A review [J]. Artificial Intelligence in Agriculture, 2020, 4: 140‒149.
[18]
Li C S, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events: 2 model applications [J]. Journal of Geophysical Research: Atmospheres, 1992, 97(9): 9777‒9783.
[19]
Li C S, Frolking S, Harriss R. Modeling carbon biogeochemistry in agricultural soils [J]. Global Biogeochemical Cycles, 1994, 8(3): 237‒254.
[20]
Li C S. Modeling trace gas emissions from agricultural ecosystems [J]. Nutrient Cycling in Agroecosystems, 2000, 58: 259‒276.
[21]
Gilhespy S L, Anthony S, Cardenas L, et al. First 20 years of DNDC (DeNitrification DeComposition): Model evolution [J]. Ecological Modelling, 2014, 292: 51‒62.
[22]
Wang Y C, Tao F L, Yin L C, et al. Spatiotemporal changes in greenhouse gas emissions and soil organic carbon sequestration for major cropping systems across China and their drivers over the past two decades [J]. Science of the Total Environment, 2022, 833: 155087.
[23]
Chen P F, Yang J P, Jiang Z H, et al. Prediction of future carbon footprint and ecosystem service value of carbon sequestration response to nitrogen fertilizer rates in rice production [J]. Science of the Total Environment, 2020, 735: 139506.
[24]
Li H, Wang L G, Li J Z, et al. The development of China-DNDC and review of its applications for sustaining Chinese agriculture [J]. Ecological Modelling, 2017, 348: 1‒13.
[25]
Wang Z, Zhang X Y, Liu L, et al. Inhibition of methane emissions from Chinese rice fields by nitrogen deposition based on the DNDC model [J]. Agricultural Systems, 2020, 184: 102919.
[26]
Wang Z, Zhang X Y, Liu L, et al. Estimates of methane emissions from Chinese rice fields using the DNDC model [J]. Agricultural and Forest Meteorology, 2021, 303: 108368.
[27]
吴良泉, 武良, 崔振岭, 等‍. 中国水稻区域氮磷钾肥推荐用量及肥料配方研究 [J]. 中国农业大学学报, 2016, 21(9): 1‒13.
Wu L Q, Wu L, Cui Z L, et al. Studies on recommended nitrogen, phosphorus and potassium application rates and special fertilizer formulae for different rice production regions in China [J]. Journal of China Agricultural University, 2016, 21(9): 1‒13.
[28]
丑洁明, 徐源, 徐洪‍. 气候变化背景下中国主要粮食作物生长期界定的研究综述 [J]. 北京师范大学学报(自然科学版), 2022, 58(6): 945‒949.
Chou J M, Xu Y, Xu H. Definition of growing period for major grain crops in China: A review [J]. Journal of Beijing Normal University (Natural Science), 2022, 58(6): 945‒949.
[29]
万佳静, 景元书, 吉梦宇, 等‍. DNDC模型在稻田水肥管理中的应用研究进展 [J]. 生态学杂志, 2024, 43(7): 2198‒2207.
Wan J J, Jing Y S, Ji M Y, et al. Research progress on application of DNDC model in water and fertilizer management of paddy field [J]. Chinese Journal of Ecology, 2024, 43(7): 2198‒2207.
[30]
陈云峰, 夏贤格, 杨利, 等‍. 秸秆还田是秸秆资源化利用的现实途径 [J]. 中国土壤与肥料, 2020 (6): 299‒307.
Chen Y F, Xia X G, Yang L, et al. Straw return is the realistic way of straw resource utilization [J]. Soil and Fertilizer Sciences in China, 2020 (6): 299‒307.
[31]
彭少兵, 黄见良, 钟旭华, 等‍. 提高中国稻田氮肥利用率的研究策略 [J]. 中国农业科学, 2002, 35(9): 1095‒1103.
Peng S B, Huang J L, Zhong X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China [J]. Scientia Agricultura Sinica, 2002, 35(9): 1095‒1103.
[32]
Lu F, Wang X K, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland [J]. Global Change Biology, 2009, 15(2): 281‒305.
[33]
马子钰, 马文林‍. 秸秆还田对中国农田土壤固碳效应影响的研究 [J]. 土壤, 2023, 55(1): 205‒210.
Ma Z Y, Ma W L. Effects of straw returning on soil organic carbon in China's cropland—A meta-analysis [J]. Soils, 2023, 55(1): 205‒210.
[34]
Xia L L, Ti C P, Li B L, et al. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential [J]. Science of the Total Environment, 2016, 556: 116‒125.
[35]
唐志伟, 张俊, 邓艾兴, 等‍. 我国稻田甲烷排放的时空特征与减排途径 [J]. 中国生态农业学报(中英文), 2022, 30(4): 582‒591.
Tang Z W, Zhang J, Deng A X, et al. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China [J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 582‒591.
[36]
Tang J C, Liu T Q, Jiang Y, et al. Current status of carbon neutrality in Chinese rice fields (2002—2017) and strategies for its achievement [J]. Science of the Total Environment, 2022, 842: 156713.
[37]
陈松文, 刘天奇, 曹凑贵, 等‍. 水稻生产碳中和现状及低碳稻作技术策略 [J]. 华中农业大学学报, 2021, 40(3): 3‒12.
Chen S W, Liu T Q, Cao C G, et al. Situation of carbon neutrality in rice production and techniques for low-carbon rice farming [J]. Journal of Huazhong Agricultural University, 2021, 40(3): 3‒12.
[38]
曹开勋, 赵坤, 金王飞飞, 等‍. 水氮互作对稻田温室气体排放的影响 [J]. 土壤学报, 2022, 59(5): 1386‒1396.
Cao K X, Zhao K, Jin W F F, et al. Effects of water-nitrogen interaction on greenhouse gas emissions in a paddy soil [J]. Acta Pedologica Sinica, 2022, 59(5): 1386‒1396.
[39]
周胜, 宋祥甫, 颜晓元‍. 水稻低碳生产研究进展 [J]. 中国水稻科学, 2013, 27(2): 213‒222.
Zhou S, Song X F, Yan X Y. Progress in research on low-carbon rice production technology [J]. Chinese Journal of Rice Science, 2013, 27(2): 213‒222.
[40]
Zhang W J, Xu M G, Wang X J, et al. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China [J]. Journal of Soils and Sediments, 2012, 12(4): 457‒470.
[41]
Zomer R J, Bossio D A, Sommer R, et al. Author correction: Global sequestration potential of increased organic carbon in cropland soils [J]. Scientific Reports, 2021, 11: 18720.
[42]
Tao F L, Palosuo T, Valkama E, et al. Cropland soils in China have a large potential for carbon sequestration based on literature survey [J]. Soil and Tillage Research, 2019, 186: 70‒78.
[43]
Lu F. How can straw incorporation management impact on soil carbon storage? A meta-analysis [J]. Mitigation and Adaptation Strategies for Global Change, 2015, 20(8): 1545‒1568.
[44]
Liu Z, Guan D B, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China [J]. Nature, 2015, 524(7565): 335‒338.
[45]
祝贞科, 肖谋良, 魏亮, 等‍. 稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策 [J]. 中国生态农业学报(中英文), 2022, 30(4): 592‒602.
Zhu Z K, Xiao M L, Wei L, et al. Key biogeochemical processes of carbon sequestration in paddy soil and its countermeasures for carbon neutrality [J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 592‒602.
[46]
李宝珍, 周萍, 李宇虹, 等‍. 亚热带稻田土壤持续固碳机制研究进展 [J]. 华中农业大学学报, 2022, 41(6): 71‒78.
Li B Z, Zhou P, Li Y H, et al. Progress on the mechanism of sustainable carbon sequestration in subtropical paddy soils [J]. Journal of Huazhong Agricultural University, 2022, 41(6): 71‒78.
[47]
Tang H Y, Liu Y, Li X M, et al. Carbon sequestration of cropland and paddy soils in China: Potential, driving factors, and mechanisms [J]. Greenhouse Gases: Science and Technology, 2019, 9(5): 872‒885.
[48]
徐湘博, 李静, 薛颖昊, 等‍. 减排固碳目标纳入农业绿色发展政策的协同机制 [J]. 农业环境科学学报, 2022, 41(10): 2091‒2101.
Xu X B, Li J, Xue Y H, et al. Synergistic mechanism to incorporate the targets of greenhouse gas emission reduction and carbon sequestration into agricultural green development policies under a carbon-neutral background [J]. Journal of Agro-Environment Science, 2022, 41(10): 2091‒2101.
基金
中国工程院咨询项目“农田生态系统温室气体减排路径及对策”(2023-XY-23); 国家自然科学基金项目(22376179); 科技基础资源调查专项(2023FY100102)
PDF(857 KB)

Accesses

Citation

Detail

段落导航
相关文章

/