平陆运河土石方多路径利用的基础问题与解决途径

肖建庄, 沈剑羽, 马少坤, 李卓峰, 段珍华, 程耀飞, 肖绪文

中国工程科学 ›› 2024, Vol. 26 ›› Issue (1) : 251-262.

PDF(1919 KB)
PDF(1919 KB)
中国工程科学 ›› 2024, Vol. 26 ›› Issue (1) : 251-262. DOI: 10.15302/J-SSCAE-2024.07.003
工程管理

平陆运河土石方多路径利用的基础问题与解决途径

作者信息 +

Multi-path Utilization of Earthwork in Pinglu Canal: Basic Problems and Solutions

Author information +
History +

摘要

平陆运河是西部地区陆海新通道骨干工程,其建设过程将产生涵盖23 种岩土类型、成分杂且分布散的土石方约3.39×108 m3,因而土石方资源化利用是建设平陆运河绿色工程的重要组成部分;正在实施的土石方利用途径以抬填造地为主(占50%以上),存在高品质的资源化利用率低、产品应用需求研究滞后、创新技术少、数字化程度低、碳排放评价缺失等基础问题,阻碍了平陆运河土石方的多路径高效利用。本文针对相关基础问题,着重从资源化、数字化、低碳化的角度出发,提出了平陆运河土石方利用创新解决途径:挖掘工程自身及周边地区的潜在应用需求,根据不同岩土的类型分别形成利用途径,实现多场景应用和多路径利用;构建开挖区土石方地质信息模型、土石方信息数据库等,形成土石方的数字化“挖 ‒ 运 ‒储 ‒ 用”技术;建议针对多利用路径的碳排放进行生命周期评价,结合土石方数据库开展碳排放的动态评价,研发模块化移动式处置装备、原位利用技术以支持实现降本减碳。在平陆运河工程的现状基础上,资源化、数字化、低碳化的有机结合将为平陆运河绿色工程建设提供坚实支撑,也可为后续其他工程的土石方多路径利用提供技术参照。

Abstract

Pinglu Canal is the backbone project of the New Western Land-Sea Corridor of China. The canal project generated a total of 3.39 × 108 m3 of earthwork that covers approximately 23 types of rocks and soil and is characterized by large amount, diverse composition, and scattered distribution. Currently, the earthwork is utilized mainly through landfill and reclamation (over 50%); however, basic problems exist, including a low high-quality utilization rate, lagging research on demand for earthwork-reused products, lack of innovative technologies for earthwork reuse, a low level of digitalization, and lack of carbon emission evaluation. To address these problems, this study proposes innovative solutions from the perspectives of resource utilization, digitization, and carbon reduction. First, it is necessary to explore the potential application demands for the canal project itself and surrounding areas and propose corresponding utilization paths according to different types of rock and soil, thus to achieve multi-scenario, multi-path utilization. Second, geological information models and information databases should be established for earthwork in excavation areas to help develop a digital excavation‒transportation‒storage‒utilization technology for earthwork. Moreover, it is recommended to conduct a lifecycle assessment to clarify the carbon emissions of multi-path utilization technologies, achieve a dynamic evaluation of carbon emissions by combining with the information from the earthwork databases, and develop modular mobile-type disposal equipment and in-situ utilization technologies to achieve the reduction of cost and carbon emissions. The organic combination of resource utilization, digitization, and carbon reduction is expected to provide a favorable support for the green construction of the Pinglu Canal Project.

关键词

平陆运河 / 土石方 / 多路径利用 / 地质信息模型 / 数据库 / 碳排放

Keywords

inglu Canal / earthwork / multi-path utilization / geo-information model / database / carbon emissions

引用本文

导出引用
肖建庄, 沈剑羽, 马少坤. 平陆运河土石方多路径利用的基础问题与解决途径. 中国工程科学. 2024, 26(1): 251-262 https://doi.org/10.15302/J-SSCAE-2024.07.003

参考文献

[1]
平陆运河初步设计获批 [J]. 珠江水运, 2023 (3): 17.
[2]
Zhang N, Duan H B, Sun P W, et al. Characterizing the generation and environmental impacts of subway-related excavated soil and rock in China [J]. Journal of Cleaner Production, 2020, 248: 119242.
[3]
Tanner S, Katra I, Argaman E, et al. Erodibility of waste (loess) soils from construction sites under water and wind erosional forces [J]. Science of the Total Environment, 2018, 616/617: 1524‒1532.
[4]
Yin Y P, Li B, Wang W P, et al. Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization [J]. Engineering, 2016, 2(2): 230‒249.
[5]
Xiao J Z, Shen J Y, Bai M Y, et al. Reuse of construction spoil in China: Current status and future opportunities [J]. Journal of Cleaner Production, 2021, 290: 125742.
[6]
Zhang Z P, Wong Y C, Arulrajah A, et al. A review of studies on bricks using alternative materials and approaches [J]. Construction and Building Materials, 2018, 188: 1101‒1118.
[7]
Zhang L Y. Production of bricks from waste materials‒A review [J]. Construction and Building Materials, 2013, 47: 643‒655.
[8]
Muñoz V P, Morales O M P, Mendívil G M A, et al. Fired clay bricks manufactured by adding wastes as sustainable construction material—A review [J]. Construction and Building Materials, 2014, 63: 97‒107.
[9]
肖建庄, 沈剑羽, 段珍华, 等‍. 工程渣土资源化基础问题与低碳技术路径 [J]. 科学通报, 2023, 68(21): 2722‒2736.
[10]
Bai J, Kang P, Zhang W B, et al. Feasibility study on using excavated soil and rock to sintering utilization [J]. Circular Economy, 2022, 1(1): 100007.
[11]
中交水运规划设计院有限公司‍. 西部陆海新通道 (平陆)运河马道枢纽及上游航道工程施工图 (K13+223~K30+561) [R]. 北京: 中交水运规划设计院有限公司, 2023.
[12]
中水珠江规划勘测设计有限公司‍. 西部陆海新通道 (平陆)运河钦江干流中游段航道工程 (初步设计阶段)岩土工程勘察报告 [R]. 广州: 中水珠江规划勘测设计有限公司, 2022.
[13]
黄宗清, 时成相, 何振洲‍. 平陆运河沿线土石方综合利用研究 [J]. 珠江水运, 2023 (11): 24‒26.
[14]
王晓波, 亢泽千, 孔亚宁, 等‍. 母岩类型和岩性对混凝土骨料性能的影响 [J]. 混凝土, 2023 (3): 77‒80, 85.
[15]
温郁斌, 张静晓, 孙艳鹏. 基于粉碎性黄土环境的弃渣砂岩在混凝土中的应用性能研究 [J]. 施工技术 (中英文), 2022, 51(19): 116‒121.
[16]
Osouli A, Chaulagai R, Tutumluer E, et al. Strength characteristics of crushed gravel and limestone aggregates with up to 12% plastic fines evaluated for pavement base/subbase applications [J]. Transportation Geotechnics, 2019, 18: 25‒38.
[17]
Tang Y X, Xiao J Z, Liu Q, et al. Natural gravel-recycled aggregate concrete applied in rural highway pavement: Material properties and life cycle assessment [J]. Journal of Cleaner Production, 2022, 334: 130219.
[18]
Mohammed M, Geremew A, Mohammed M, et al. A study on the applicability of scoria gravel an alternative base course material through blending with marble waste aggregate [J]. Heliyon, 2022, 8(11): e11742.
[19]
Bendixen M, Best J, Hackney C, et al. Time is running out for sand [J]. Nature, 2019, 571: 29‒31.
[20]
Alhumayani H, Gomaa M, Soebarto V, et al. Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete [J]. Journal of Cleaner Production, 2020, 270: 122463.
[21]
沈剑羽, 肖建庄, 高琦, 等‍. 工程弃土复配及再生砖性能试验 [J]. 应用基础与工程科学学报, 2023, 31(4): 990‒1005.
[22]
侯逸青, 肖建庄, 高琦, 等‍. 工程弃土真空挤出成型及干燥特性研究——以许昌市为例 [J]. 环境卫生工程, 2021, 29(6): 71‒81.
[23]
Collins R J. Dredged silt as a raw material for the construction industry [J]. Resource Recovery and Conservation, 1980, 4(4): 337‒362.
[24]
Wang H Y, Tsai K C. Engineering properties of lightweight aggregate concrete made from dredged silt [J]. Cement and Concrete Composites, 2006, 28(5): 481‒485.
[25]
Bhairappanavar S, Liu R, Shakoor A. Eco-friendly dredged material-cement bricks [J]. Construction and Building Materials, 2021, 271: 121524.
[26]
Mezencevova A, Yeboah N N, Burns S E, et al. Utilization of Savannah Harbor River sediment as the primary raw material in production of fired brick [J]. Journal of Environmental Management, 2012, 113: 128‒136.
[27]
Slimanou H, Eliche-Quesada D, Kherbache S, et al. Harbor dredged sediment as raw material in fired clay brick production: Characterization and properties [J]. Journal of Building Engineering, 2020, 28: 101085.
[28]
Arsenovic M, Radojevic Z, Stankovic S. Removal of toxic metals from industrial sludge by fixing in brick structure [J]. Construction and Building Materials, 2012, 37: 7‒14.
[29]
Weng C H, Lin D F, Chiang P C. Utilization of sludge as brick materials [J]. Advances in Environmental Research, 2003, 7(3): 679‒685.
[30]
Zhang J, Lu S D, Feng T G, et al. Research on reuse of silty fine sand in backfill grouting material and optimization of backfill grouting material proportions [J]. Tunnelling and Underground Space Technology, 2022, 130: 104751.
[31]
吴筱文, 乌呢日, 王小燕, 等‍. 巴基斯坦粉细砂在抗裂抹灰砂浆中的应用研究 [J]. 新型建筑材料, 2023, 50(9): 68‒70.
[32]
朱江‍. 岩石与地貌 [M]. 重庆: 重庆大学出版社, 2014.
[33]
Liu C D, Cheng Y, Jiao Y Y, et al. Experimental study on the effect of water on mechanical properties of swelling mudstone [J]. Engineering Geology, 2021, 295: 106448.
[34]
Huang K, Dai Z J, Yan C Z, et al. Swelling behaviors of heterogeneous red-bed mudstone subjected to different vertical stresses [J/OL]. Journal of Rock Mechanics and Geotechnical Engineering, [2023-09-27]. https://doi.org/10.1016/j.jrmge.2023.08.004.
[35]
颜锦生‍. 南宁含砂泥岩资源开发利用的调查报告 [J]. 南方国土资源, 2012 (3): 38‒39.
[36]
颜锦生‍. 南宁含砂泥岩烧结多孔高抗压环保砖的发展前景 [J]. 地质论评, 2010, 56(3): 441.
[37]
黄少文, 郭灿贤, 徐玉华‍. 利用红泥岩制备轻质高强球形陶粒试验研究 [J]. 非金属矿, 2004, 27(6): 11‒13.
[38]
许宁, 陈铭, 蔺威威, 等‍. 泥岩地层盾构渣土免烧砖制备技术研究 [J]. 新型建筑材料, 2023, 50(6): 80‒82, 94.
[39]
Oti J E, Kinuthia J M, Robinson R B. The development of unfired clay building material using brick dust waste and mercia mudstone clay [J]. Applied Clay Science, 2014, 102: 148‒154.
[40]
Wu S L, Peng X, Sun X H, et al. One-step processing of waste dredged slurry into planting soil by targeted pretreatment and vacuum filtration [J]. Journal of Environmental Management, 2024, 349: 119334.
[41]
李世汩, 徐扬帆, 夏新星, 等‍. 调理方式对淤泥绿化种植土细菌多样性的影响 [J]. 北方园艺, 2023 (15): 73‒80.
[42]
Zhang J, Amonette J E, Flury M. Effect of biochar and biochar particle size on plant-available water of sand, silt loam, and clay soil [J]. Soil and Tillage Research, 2021, 212: 104992.
[43]
Qian J S, Hu Y Y, Zhang J K, et al. Evaluation the performance of controlled low strength material made of excess excavated soil [J]. Journal of Cleaner Production, 2019, 214: 79‒88.
[44]
Zhu Y P, Liu D R, Fang G W, et al. Utilization of excavated loess and gravel soil in controlled low strength material: Laboratory and field tests [J]. Construction and Building Materials, 2022, 360: 129604.
[45]
Kim Y S, Do T M, Kim H K, et al. Utilization of excavated soil in coal ash-based controlled low strength material (CLSM) [J]. Construction and Building Materials, 2016, 124: 598‒605.
[46]
Jian S W, Cheng C, Wang J, et al. Effect of sulfonated acetone formaldehyde on the properties of high-fluid backfill materials [J]. Construction and Building Materials, 2022, 327: 126795.
[47]
Jian S W, Cheng C, Lv Y, et al. Preparation and evaluation of high-fluid backfill materials from construction spoil [J]. Construction and Building Materials, 2022, 345: 128370.
[48]
Al-Subari B L, Hilal A, Ekinci A. Life cycle assessment of soil stabilization using cement and waste additives [J]. Construction and Building Materials, 2023, 403: 133045.
[49]
Liu J, Wang B, Hu C T, et al. Multiscale study of the road performance of cement and fly ash stabilized aeolian sand gravel base [J]. Construction and Building Materials, 2023, 397: 131842.
[50]
Yang S Q, Yang Z Y, Chen K K, et al. Using case study on the performance of rural cement stabilizing construction waste recycling road base [J]. Construction and Building Materials, 2023, 405: 133351.
[51]
Zhao Y, Li Y, Wang C L, et al. Road performance of ordinary Portland cement improvement of strongly weathered phyllite filler [J]. Construction and Building Materials, 2022, 350: 128801.
[52]
Zhao C Y, Mahmoudi E, Luo M M, et al. Unfavorable geology recognition in front of shallow tunnel face using machine learning [J]. Computers and Geotechnics, 2023, 157: 105313.
[53]
许振浩, 马文, 李术才, 等. 岩性识别: 方法、现状及智能化发展趋势 [J]. 地质论评, 2022, 68(6): 2290‒2304.
[54]
王名越, 狄永军, 张春禹‍. 花岗岩矿物正交偏光镜下图像人工智能识别研究 [J/OL]. 矿物学报, [2023-09-11]. https://doi.org/10.16461/j.cnki.1000-4734.2023.43.063.
[55]
Kiran P D N, Murugan R, Goel T. Smart soil image classification system using lightweight convolutional neural network [J]. Expert Systems with Applications, 2024, 238: 122185.
[56]
Lou W, Zhang D X, Bayless R C. Review of mineral recognition and its future [J]. Applied Geochemistry, 2020, 122: 104727.
[57]
熊峰, 廖一凡, 曹伟腾, 等‍. 基于卷积神经网络 ‒ 深度迁移学习的岩性自动识别研究 [J]. 安全与环境工程, 2023, 30(4): 26‒34.
[58]
于沭, 温彦锋, 王玉杰, 等‍. 基于图像识别技术的土石料级配检测系统 [J]. 中国水利水电科学研究院学报, 2019, 17(6): 439‒445.
[59]
雷雨萌, 陈祖煜, 于沭, 等‍. 基于深度阈值卷积模型的土石料级配智能检测方法研究 [J]. 水利学报, 2021, 52(3): 369‒380.
[60]
Zhang N, Zhang H, Schiller G, et al. Unraveling the global warming mitigation potential from recycling subway-related excavated soil and rock in China via life cycle assessment [J]. Integrated Environmental Assessment and Management, 2021, 17(3): 639‒650.
基金
广西科技重大专项 (AA23062054, AA23023016);国家重点研发计划项目 (2022YFC3803400)
PDF(1919 KB)

Accesses

Citation

Detail

段落导航
相关文章

/