全球关键电子材料应用进展与我国未来发展方向

张立群, 李祥高

中国工程科学 ›› 2025

PDF(831 KB)
PDF(831 KB)
中国工程科学 ›› 2025 DOI: 10.15302/J-SSCAE-2024.09.017

全球关键电子材料应用进展与我国未来发展方向

作者信息 +

Key Electronic Materials: Global Application Progress and Future Development Directions in China

Author information +
History +

摘要

电子材料是用于制造电子器件、集成电路、光电子设备、其他电子系统的关键功能材料,在半导体、显示技术、通信、能源存储与转换等领域具有广泛应用,也成为人工智能、物联网、先进传感、量子计算等前沿科技领域发展的关键支撑;关键电子材料技术的创新发展直接影响电子产业链的技术进步和市场竞争力,在国际科技竞争趋于激烈的背景下已经成为支撑国家战略性新兴产业发展的核心要素。本文全面梳理了全球关键电子材料应用进展情况,涉及集成电路、显示技术、光伏新能源、高端电容/电阻、通信技术等产业,涵盖半导体硅材料、电子特气、光刻胶、湿电子化学品、化学机械抛光材料、第三代半导体材料,液晶显示用材料、有机发光二极管材料、激光显示材料、微发光二极管材料、次毫米发光二极管材料,晶硅太阳能电池材料、钙钛矿太阳能电池材料、有机太阳能电池材料,介电陶瓷材料、聚合物薄膜材料、铝箔材料、导电聚合物材料、电极浆料,光导纤维材料、压电晶体材料等细分类型。研究认为,智能移动设备、智能穿戴、物联网等新兴技术快速发展,对电子材料的性能、可靠性、精度等提出了更高要求;我国高端电子材料与国际领先水平相比仍有差距,表现为高端材料技术自主性不足、国际影响力与标准制定权较弱等;未来需围绕电子信息行业高端化、绿色化、自主化、智能化的发展方向,攻关集成电路、新型显示、高端电容/电阻、未来通信行业的高端电子材料并逐步实现国产化替代,推动我国关键电子材料技术与产业高质量发展。

Abstract

Electronic materials are key functional materials used in the manufacture of electronic devices, integrated circuits, optoelectronic devices, and other electronic systems. They are widely applied in fields such as semiconductors, displays, communications, and energy storage and conversion, and have become a critical support for the development of frontier technologies such as artificial intelligence, the Internet of Things (IoT), advanced sensing, and quantum computing. The innovative development of key electronic material technologies directly influences the technological progress and market competitiveness of the electronic industry chain, and in the context of increasingly fierce international technological competition, it has become a core element in supporting the development of a country's strategic emerging industries. This study comprehensively reviews the global progress in the application of key electronic materials, covering industries such as integrated circuits, display technology, photovoltaic energy, high-end capacitors/resistors, and communications technology. Specifically, it reviews semiconductor silicon materials, electronic specialty gases, photoresists, wet electronic chemicals, chemical mechanical polishing materials, and third-generation semiconductor materials from the integrated circuit industry; liquid crystal display materials, organic light-emitting diode materials, laser display materials, micro-light-emitting diode materials, and sub-millimeter light-emitting diode materials from the display industry; crystalline silicon solar cell materials, perovskite solar cell materials, and organic solar cell materials from the photovoltaic industry; dielectric ceramic materials, polymer film materials, aluminum foil materials, conductive polymer materials, and electrode pastes from the high-end capacitors/resistor industry; and optical fiber materials and piezoelectric crystal materials from the communications industry. The study suggests that the rapid development of emerging technologies such as smart mobile devices, smart wearables, and the IoT has put forward higher requirements for the performance, reliability, and precision of electronic materials. Compared with international leading levels, China's high-end electronic materials still have a gap, manifested in insufficient autonomy in high-end material technologies, weak international influences, and limited participation in standards setting. Future efforts should be focused on the high-end, green, independent, and intelligent development of the electronic information industry, with a particular emphasis on breakthroughs in high-end electronic materials for integrated circuits, new displays, high-end capacitors/resistors, and the future communications industry. This will gradually achieve domestic substitution and promote the high-quality development of key electronic material technologies and industries in China.

关键词

电子材料 / 半导体 / 显示技术 / 光伏 / 电子元器件 发展态势 /

Keywords

electronic materials / semiconductor / display technology / photovoltaic / electronic components, development trend

引用本文

导出引用
张立群, 李祥高. 全球关键电子材料应用进展与我国未来发展方向. 中国工程科学. 2025 https://doi.org/10.15302/J-SSCAE-2024.09.017

参考文献

[1]
Zeydan E, Arslan S, Turk Y. 6G wireless communications for industrial automation: Scenarios, requirements and challenges [J]. Journal of Industrial Information Integration, 2024, 42: 100732.
[2]
张雅欣, 木其坚. 人工智能的能耗影响、挑战及有关建议 [J]. 中国投资, 2024 (ZA): 32‒35.
Zhang Y X, Mu Q J. The impact, challenge and suggestions of energy consumption of artificial intelligence [J]. China Investment, 2024 (ZA): 32‒35.
[3]
Ding W P, Abdel-Basset M, Ali A M, et al. A survey of intelligent multimedia forensics for Internet of things communications: Approaches, strategies, perspectives, and challenges for a sustainable future [J]. Engineering Applications of Artificial Intelligence, 2024, 138: 109451.
[4]
刘畅, 缐珊珊, 于连超, 等. 新时期我国信息与电子领域工程科技发展研究 [J]. 中国工程科学, 2024, 26(5): 37‒45.
Liu C, Xian S S, Yu L C, et al. Development strategies of engineering science and technologies in information and electronics in China for the new era [J]. Strategic Study of CAE, 2024, 26(5): 37‒45.
[5]
谢克昌. 新型能源体系发展思考与建议 [J]. 中国工程科学, 2024, 26(4): 1‒8.
Xie K C. Strategic thinking and suggestions on new energy system [J]. Strategic Study of CAE, 2024, 26(4): 1‒8.
[6]
赵鸿滨, 周旗钢, 李志辉, 等. 面向新兴产业和未来产业的新材料发展战略研究 [J]. 中国工程科学, 2024, 26(1): 23‒34.
Zhao H B, Zhou Q G, Li Z H, et al. Development strategies of new materials for emerging industries and future industries [J]. Strategic Study of CAE, 2024, 26(1): 23‒34.
[7]
彭玉鑫, 陈雪垠, 章阳坤. 柔性电子材料与器件在可穿戴传感领域的发展现状、挑战与创新策略 [J]. 材料工程, 2024, 52(8): 42‒58.
Peng Y X, Chen X Y, Zhang Y K. Current status, challenges, and innovative strategies of flexible electronic materials and devices in field of wearable sensing [J]. Journal of Materials Engineering, 2024, 52(8): 42‒58.
[8]
刘帅, 张翔鸿, 刘狄, 等. 面向神经形态显示的有机电子材料与器件 [J]. 中国科学: 化学, 2024, 54(4): 510‒520.
Liu S, Zhang X H, Liu D, et al. Organic electronic materials and devices for neuromorphic display [J]. Scientia Sinica Chimica, 2024, 54(4): 510‒520.
[9]
叶曾瑜. 我国新型显示与战略性电子材料专利导航研究——以电子纸领域关键技术为例 [J]. 中国发明与专利, 2024, 21(1): 31‒41.
Ye Z Y. Patent navigation research on new display and strategic electronic materials in China—Taking key technologies in the field of E-paper as an example [J]. China Invention & Patent, 2024, 21(1): 31‒41.
[10]
张平, 陈岩, 吴超楠. 6G: 新一代移动通信技术发展态势及展望 [J]. 中国工程科学, 2023, 25(6): 1‒8.
Zhang P, Chen Y, Wu C N. Six-generation mobile communication: Development trend and outlook [J]. Strategic Study of CAE, 2023, 25(6): 1‒8.
[11]
贾玉, 张博文. 量子计算技术发展与创新研究 [J]. 信息通信技术与政策, 2024 (7): 69‒75.
Jia Y, Zhang B W. Research on quantum computing technology development and innovation [J]. Information and Communications Technology and Policy, 2024 (7): 69‒75.
[12]
Jiang Y W, Tian B Z. Inorganic semiconductor biointerfaces [J]. Nature Reviews Materials, 2018, 3(12): 473‒490.
[13]
Ding L, Yu Z D, Wang X Y, et al. Polymer semiconductors: Synthesis, processing, and applications [J]. Chemical Reviews, 2023, 123(12): 7421‒7497.
[14]
刘清, 薛德升, 高权. 世界半导体产业集群的研究进展与展望: 基于半导体组织模式视角 [J/OL]. 世界地理研究, [2024-12-25]. http://kns.cnki.net/kcms/detail/31.1626.P.20240726.0949.002.html.
Liu Q, Xue D S, Gao Q. Research progress and prospect of world semiconductor industry clusters: From the perspective of semiconductor organization model [J/OL]. China Industrial Economics, [2024-12-25]. http://kns.cnki.net/kcms/detail/31.1626.P.20240726.0949.002.html.
[15]
Zhuang J C, Xu X, Feng H F, et al. Honeycomb silicon: A review of silicene [J]. Science Bulletin, 2015, 60(18): 1551‒1562.
[16]
Hausmann D, Becker J, Wang S L, et al. Rapid vapor deposition of highly conformal silica nanolaminates [J]. Science, 2002, 298(5592): 402‒406.
[17]
Clark J R. Chemistry of electronic gases [J]. Journal of Chemical Education, 2006, 83(6): 857.
[18]
何红振, 刘圆梦, 张金彪, 等. 电子特气的合成与纯化技术研究进展 [J]. 低温与特气, 2023, 41(1): 1‒5, 46.
He H Z, Liu Y M, Zhang J B, et al. Advances in synthesis and purification of electronic special gas [J]. Low Temperature and Specialty Gases, 2023, 41(1): 1‒5, 46.
[19]
Li J, Yin Y M, Meng H. Research progress of color photoresists for TFT-LCD [J]. Dyes and Pigments, 2024, 225: 112094.
[20]
Hassaan M, Saleem U, Singh A, et al. Recent advances in positive photoresists: Mechanisms and fabrication [J]. Materials, 2024, 17(11): 2552.
[21]
Lin Q H. Polymeric electronic materials for microelectronics manufacturing: A review [J]. Polymer, 2023, 286: 126395.
[22]
Zhang Y H, Yu H J, Wang L, et al. Advanced lithography materials: From fundamentals to applications [J]. Advances in Colloid and Interface Science, 2024, 329: 103197.
[23]
Cen J, Liu W, Xu J, et al. Single-component high-resolution dual-tone EUV photoresists based on precision self-immolative polymers [J]. Angewandte Chemie International Edition, 2025, 64(3): e202415588.
[24]
Kang Y K, Lee S J, Eom S, et al. Recent progress of inorganic photoresists for next-generation EUV lithography [J]. Journal of Materials Chemistry C, 2024, 12(39): 15855‒15887.
[25]
Wang D H, Xu R F, Zhou D H, et al. Zn-Ti oxo cluster photoresists for EUV lithography: Cluster structure and lithographic performance [J]. Chemical Engineering Journal, 2024, 493: 152315.
[26]
杨亮亮, 胡世明, 龚慧萍. 中国湿电子化学品发展现状与展望 [J]. 精细与专用化学品, 2023, 31(11): 1‒9.
Yang L L, Hu S M, Gong H P. Development status and prospect of wet electronic chemicals in China [J]. Fine and Specialty Chemicals, 2023, 31(11): 1‒9.
[27]
Ravi K D V, Woo K, Moon J. Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications [J]. Nanoscale, 2015, 7(41): 17195‒17210.
[28]
Bong J H, Sul O, Yoon A, et al. Facile graphene n-doping by wet chemical treatment for electronic applications [J]. Nanoscale, 2014, 6(15): 8503‒8508.
[29]
Hu Z L, Liu J J, Zhao X L, et al. Organic anodes with nearly 100% initial coulombic efficiency enabled by wet-chemically constructed artificial solid-electrolyte interphase film toward high-energy-density organic full batteries [J]. Advanced Functional Materials, 2024, 34(37): 2402199.
[30]
Ma J H, Xu N, Cheng J, et al. A review on the development of ceria for chemical mechanical polishing [J]. Powder Technology, 2024, 444: 119989.
[31]
Lee H, Lee D, Jeong H. Mechanical aspects of the chemical mechanical polishing process: A review [J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(4): 525‒536.
[32]
Zhao G Y, Wei Z, Wang W L, et al. Review on modeling and application of chemical mechanical polishing [J]. Nanotechnology Reviews, 2020, 9(1): 182‒189.
[33]
高爽, 郑宇亭, 张志国. 第三代半导体发展现状及未来展望 [J]. 科技导报, 2024, 42(8): 29‒38.
Gao S, Zheng Y T, Zhang Z G. Development status and future prospect of the wide band-gap semiconductors [J]. Science & Technology Review, 2024, 42(8): 29‒38.
[34]
Pan C F, Zhai J Y, Wang Z L. Piezotronics and piezo-phototronics of third generation semiconductor nanowires [J]. Chemical Reviews, 2019, 119(15): 9303‒9359.
[35]
彭寿, 洪伟, 秦旭升, 等. 我国信息显示关键材料发展战略研究 [J]. 中国工程科学, 2022, 24(4): 85‒93.
Peng S, Hong W, Qin X S, et al. Development strategy of key materials for information display in China [J]. Strategic Study of CAE, 2022, 24(4): 85‒93.
[36]
Kim K H, Song J K. Technical evolution of liquid crystal displays [J]. NPG Asia Materials, 2009, 1(1): 29‒36.
[37]
Schadt M. How we made the liquid crystal display [J]. Nature Electronics, 2018, 1: 481.
[38]
方庆, 吴有肇, 王峰, 等. 量子点液晶显示技术发展趋势与展望 [J]. 液晶与显示, 2023, 38(3): 267‒275.
Fang Q, Wu Y Z, Wang F, et al. Development trend and prospect of quantum dot liquid crystal display [J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(3): 267‒275.
[39]
季洪雷, 程尚君, 李鹏飞, 等. 量子点背光液晶显示技术的亥姆霍兹 - 科尔劳施效应 [J]. 中国光学, 2022, 15(1): 132‒143.
Ji H L, Cheng S J, Li P F, et al. Illustrating the Helmholtz‒Kohlrausch effect of quantum dots enhanced LCD through a comparative study [J]. Chinese Optics, 2022, 15(1): 132‒143.
[40]
Zheng C L, Yang W J, Chen Y J, et al. In situ characterization of thermal-induced evolution of structure/optical properties of heterogeneous 3D chiral soft photonic crystal polymer [J]. Advanced Functional Materials, 2025, 35(2): 2412439.
[41]
Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Applied Physics Letters, 1989, 51: 913‒915.
[42]
Song J, Lee H, Jeong E G, et al. Organic light-emitting diodes: Organic light-emitting diodes: Pushing toward the limits and beyond [J]. Advanced Materials, 2020, 32(35): 2070266.
[43]
Im Y, Byun S Y, Kim J H, et al. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes [J]. Advanced Functional Materials, 2017, 27(13): 1603007.
[44]
Baker C E. Laser display technology [J]. IEEE Spectrum, 1968, 5(12): 39‒50.
[45]
Yamamoto K. Laser display technologies and their applications [J]. Advanced Optical Technologies, 2012, 1(6): 483‒488.
[46]
Parbrook P J, Corbett B, Han J, et al. Micro-light emitting diode: From chips to applications [J]. Laser & Photonics Reviews, 2021, 15(5): 2000133.
[47]
An H J, Kim M S, Myoung J M. Strategy for the fabrication of perovskite-based green micro LED for ultra high-resolution displays by micro-molding process and surface passivation [J]. Chemical Engineering Journal, 2023, 453: 139927.
[48]
Lee H E, Shin J H, Park J H, et al. Micro light-emitting diodes for display and flexible biomedical applications [J]. Advanced Functional Materials, 2019, 29(24): 1808075.
[49]
Preu R, Lohmüller E, Lohmüller S, et al. Passivated emitter and rear cell—Devices, technology, and modeling [J]. Applied Physics Reviews, 2020, 7(4): 041315.
[50]
Glunz S W, Steinhauser B, Polzin J I, et al. Silicon-based passivating contacts: The TOPCon route [J]. Progress in Photovoltaics: Research and Applications, 2023, 31(4): 341‒359.
[51]
Ballif C, Perret-Aebi L E, Lufkin S, et al. Integrated thinking for photovoltaics in buildings [J]. Nature Energy, 2018, 3: 438‒442.
[52]
Scarpulla M A, McCandless B, Phillips A B, et al. CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects [J]. Solar Energy Materials and Solar Cells, 2023, 255: 112289.
[53]
Keller J, Kiselman K, Donzel-Gargand O, et al. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency [J]. Nature Energy, 2024, 9: 467‒478.
[54]
Zhang D, Wang B, Gan Y, et al. New layered II‒III‒VI semiconductors: Promising materials for high performance solar cells [J]. The Journal of Physical Chemistry C, 2024, 128(4): 1582‒1590.
[55]
Kim J Y, Lee J W, Jung H S, et al. High-efficiency perovskite solar cells [J]. Chemical Reviews, 2020, 120(15): 7867‒7918.
[56]
Muñoz-García A B, Benesperi I, Boschloo G, et al. Dye-sensitized solar cells strike back [J]. Chemical Society Reviews, 2021, 50(22): 12450‒12550.
[57]
Liu C C, Shao L, Chen S H, et al. Recent progress in π-conjugated polymers for organic photovoltaics: Solar cells and photodetectors [J]. Progress in Polymer Science, 2023, 143: 101711.
[58]
Tyagi V V, Rahim N A A, Rahim N A, et al. Progress in solar PV technology: Research and achievement [J]. Renewable and Sustainable Energy Reviews, 2013, 20: 443‒461.
[59]
Liu W Z, Liu Y J, Yang Z Q, et al. Flexible solar cells based on foldable silicon wafers with blunted edges [J]. Nature, 2023, 617(7962): 717‒723.
[60]
Chen P, Xiao Y, Hu J T, et al. Multifunctional ytterbium oxide buffer for perovskite solar cells [J]. Nature, 2024, 625(7995): 516‒522.
[61]
Zhao K, Liu Q Q, Yao L B, et al. Peri-fused polyaromatic molecular contacts for perovskite solar cells [J]. Nature, 2024, 632(8024): 301‒306.
[62]
Gao F, Koster L A, Nguyen T Q, et al. Organic photovoltaics [J]. Advanced Energy Materials, 2018, 8(28): 1802706.
[63]
Karl L. Organic photovoltaics [J]. Nature Reviews Materials, 2016, 1(8): 16056.
[64]
Chen Z Y, Ge J F, Song W, et al. 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement [J]. Advanced Materials, 2024, 36(33): 2406690.
[65]
Jiang Y Y, Sun S M, Xu R J, et al. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells [J]. Nature Energy, 2024, 9: 975‒986.
[66]
夏恒恒, 孙超, 赵重任, 等. 固态超级电容器的研究进展 [J]. 电子元件与材料, 2022, 41(12): 1272‒1285.
Xia H H, Sun C, Zhao Z R, et al. Research progress of solid-state supercapacitor [J]. Electronic Components and Materials, 2022, 41(12): 1272‒1285.
[67]
Li D X, Zeng X J, Li Z P, et al. Progress and perspectives in dielectric energy storage ceramics [J]. Journal of Advanced Ceramics, 2021, 10(4): 675‒703.
[68]
Freeman Y, Lessner P. Evolution of polymer tantalum capacitors [J]. Applied Sciences, 2021, 11(12): 5514.
[69]
Guo Y, Wang S X, Du X F, et al. High-performance MIM-type aluminum electrolytic capacitors with durable waterproof and wide temperature window [J]. Energy Storage Materials, 2024, 71: 103685.
[70]
Jia M, Zhang M G, Zeng Q, et al. High-performance solid capacitor using vapor phase polymerized PEDOT film [J]. Journal of Materials Science, 2023, 58(4): 1979‒1990.
[71]
Allard C. High-entropy capacitors [J]. Nature Reviews Materials, 2022, 7(7): 500.
[72]
Kim M H, Kim H K, Xi K, et al. Lithium-sulfur capacitors [J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6199‒6206.
[73]
Liu R L, Wang J, Shen Z H, et al. AI for dielectric capacitors [J]. Energy Storage Materials, 2024, 71: 103612.
[74]
Onen M, Emond N, Wang B M, et al. Nanosecond protonic programmable resistors for analog deep learning [J]. Science, 2022, 377(6605): 539‒543.
[75]
Barbi I. Series loss-free resistor: Analysis, realization, and applications [J]. IEEE Transactions on Power Electronics, 2021, 36(11): 12857‒12866.
[76]
陈国华, 黄冰虹. 低温共烧低介电常数微波介质陶瓷的研究进展 [J]. 材料导报, 2023, 37(20): 28‒43.
Chen G H, Huang B H. Low temperature co-fired microwave dielectric ceramics with low dielectric constant: A review [J]. Materials Reports, 2023, 37(20): 28‒43.
[77]
Chen D Q, Zhu X W, Yang X R, et al. A review on structure-property relationships in dielectric ceramics using high-entropy compositional strategies [J]. Journal of the American Ceramic Society, 2023, 106(11): 6602‒6616.
[78]
苗洋, 杨凯, 赵鹏, 等. 微波介质陶瓷产业体系发展研究 [J]. 中国工程科学, 2024, 26(3): 34‒41.
Miao Y, Yang K, Zhao P, et al. Development of industry system of microwave dielectric ceramics [J]. Strategic Study of CAE, 2024, 26(3): 34‒41.
[79]
Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x [J]. Journal of the Chemical Society, Chemical Communications, 1977(16): 578.
[80]
Bharti M, Singh A, Samanta S, et al. Conductive polymers for thermoelectric power generation [J]. Progress in Materials Science, 2018, 93: 270‒310.
[81]
Gueye M N, Carella A, Faure-Vincent J, et al. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review [J]. Progress in Materials Science, 2020, 108: 100616.
[82]
樊明如, 马德龙, 张朋龙, 等. 导电高分子材料制备及应用进展 [J]. 山东化工, 2024, 53(6): 130‒132.
Fan M R, Ma D L, Zhang P L, et al. Progress in preparation and application of conductive polymer materials [J]. Shandong Chemical Industry, 2024, 53(6): 130‒132.
[83]
Tang H R, Liang Y Y, Liu C C, et al. A solution-processed n-type conducting polymer with ultrahigh conductivity [J]. Nature, 2022, 611(7935): 271‒277.
[84]
He Q F, Sun K, Shi Z C, et al. Polymer dielectrics for capacitive energy storage: From theories, materials to industrial capacitors [J]. Materials Today, 2023, 68: 298‒333.
[85]
Ho J S, Greenbaum S G. Polymer capacitor dielectrics for high temperature applications [J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29189‒29218.
[86]
Samtham M, Singh D, Hareesh K, et al. Perspectives of conducting polymer nanostructures for high-performance electrochemical capacitors [J]. Journal of Energy Storage, 2022, 51: 104418.
[87]
Naskar P, Maiti A, Chakraborty P, et al. Chemical supercapacitors: A review focusing on metallic compounds and conducting polymers [J]. Journal of Materials Chemistry A, 2021, 9(4): 1970‒2017.
[88]
白碧, 李艳, 张建益, 等. 电子元器件电极浆料研究 [J]. 电子元器件与信息技术, 2024, 8(1): 1‒4.
Bai B, Li Y, Zhang J Y, et al. Study on electrode paste for electronic components [J]. Electronic Components and Information Technology, 2024, 8(1): 1‒4.
[89]
Markos C, Correa R A, Bang O, et al. Optical fibers: Materials and applications [J]. Optical Materials Express, 2021, 11(5): 1364.
[90]
宋向阳, 唐国武, 董国平, 等. 我国关键有源光纤材料发展战略研究 [J]. 中国工程科学, 2024, 26(3): 42‒52.
Song X Y, Tang G W, Dong G P, et al. Development strategy of key active optical fiber materials in China [J]. Strategic Study of CAE, 2024, 26(3): 42‒52.
[91]
项秋实, 王淼, 谢东辰, 等. 浅析光纤通信技术的原理及发展趋势 [J]. 数字通信世界, 2024 (3): 173‒175.
Xiang Q S, Wang M, Xie D C, et al. Analysis of the principles and development trends of fiber optic communication technology [J]. Digital Communication World, 2024 (3): 173‒175.
[92]
Sekhar M C, Veena E, Kumar N S, et al. A review on piezoelectric materials and their applications [J]. Crystal Research and Technology, 2023, 58(2): 2200130.
[93]
Smith R T. Elastic, piezoelectric, and dielectric properties of lithium tantalate [J]. Applied Physics Letters, 1967, 11(5): 146‒148.
[94]
Jiang W T, Patel R N, Mayor F M, et al. Lithium niobate piezo-optomechanical crystals [J]. Optica, 2019, 6(7): 845.
[95]
周文彩, 王伟, 刘晓鹏, 等. 透明太阳能电池的研究进展 [J]. 材料导报, 2023, 37(8): 5‒12.
Zhou W C, Wang W, Liu X P, et al. Research progress in transparent photovoltaics [J]. Materials Reports, 2023, 37(8): 5‒12.
[96]
李政阳, 王彦正, 马天雪, 等. 智能压电声子晶体与超材料研究现状与展望 [J]. 科学通报, 2022, 67(12): 1305‒1325.
Li Z Y, Wang Y Z, Ma T X, et al. Smart piezoelectric phononic crystals and metamaterials: State-of-the-art review and outlook [J]. Chinese Science Bulletin, 2022, 67(12): 1305‒1325.
基金
中国工程院咨询项目“中美欧电子材料技术与产业竞争态势分析研究及对策”(2023-DFZD-35)
PDF(831 KB)

Accesses

Citation

Detail

段落导航
相关文章

/