
数算融合网络技术发展研究
Development of Data and Computing Convergent Network
数算融合网络是为数据空间应用定制网络服务的智能通信网络基础设施,对推动数据空间构建、数据要素流通、算力和数据融合具有促进作用,可为数据确权、流通和交易等新的经济增长点提供技术支撑。本文在介绍数算融合网络内涵的基础上,概述了其数据平面、控制平面、编排层具备的关键功能,梳理了我国发展数算融合网络的宏观发展需求,详细讨论了数算融合网络技术的发展现状和国际态势。进一步研判了数算融合网络端侧、数据中心内、数据中心出口、数据中心间、算力中心间、数据和算力中心间、控制层、编排层、安全体系等方面的关键技术,列举了数算融合网络的应用场景和具体案例,包括“东数西算”枢纽互联、城市算力网、工业外网互联、能源设施互联、行业大模型。在分析我国数算融合网络技术发展面临的挑战后,研究建议:构建支撑行业大模型高质量发展的公用专网;推动数算融合网络科学装置建设,服务国家科学发展;依托数算融合网络,推动数据空间成果落地;开展大规模算力协作,突破单点算力不足瓶颈,为数据空间网络基础设施发展提供参考。
The data and computing convergent network (DCCN) is an intelligent communication network infrastructure tailored for data space applications. It promotes data space construction, data elements circulation, and integration of computing power and data. It also provides technical support for economic growth related to data rights, data circulation, and data transactions. This study defines the DCCN, outlines the key functions of its data plane, control plane, and orchestration layer, reviews the macro development requirements of the DCCN, and discusses the current development status and international trends of DCCN technologies. It further studies key DCCN components and technologies, including end sides, internal networking of data centers, data center exits, communication among data centers, networking among computing centers, networking between data and computing centers, control layers, orchestration layers, and security systems. Moreover, the study introduces application scenarios and cases of DCCNs, including east‒west data-center interconnections, computing power networks in urban areas, industrial extranet interconnections, energy facility interconnections, and industry-scale large models. Research also covers the challenges of developing DCCNs, based on which, we propose the following suggestions for developing the DCCN: (1) establishing public specialized networks that support the high-quality development of industry-scale large models; (2) promoting the construction of DCCN-based scientific facilities, serving national scientific development; (3) using the DCCN to promote applications in data spaces; (4) carrying out large-scale collaboration among computing facilities to overcome the bottleneck of insufficient computing capability at a single point. The suggestions aim to provide references for the development of DCCN infrastructures.
数算融合网络 / 数据空间 / 智能联网 / 算力网 / 数算融合关键技术
data and computing convergent network / data space / intelligent networking / computing power network / key technologies for data and computing convergence
[1] |
于施洋, 程学旗, 郭明军, 等. 数据空间发展战略蓝皮书 [R]. 北京: "国家数据空间发展战略研究"项目组, 2024.
Yu S Y, Cheng X Q, Guo M J, et al. Development strategic bluebook of data space [R]. Beijing: "National Data Space Development Strategy Research" Project Team, 2024.
|
[2] |
Reiberg A, Niebel C, Kraemer P. What is a data space? [R]. Munich: Gaia-X Hub Germany, 2022.
|
[3] |
Gupta A, Savarese S, Ganguli S, et al. Embodied intelligence via learning and evolution [J]. Nature Communications, 2021, 12(1): 5721.
|
[4] |
中国信息通信研究院. 数据要素白皮书(2023年) [R]. 北京: 中国信息通信研究院, 2023.
China academy of Information and Communications Technology. data elements white paper (2023) [R]. Beijing: China Academy of Information and Communications Technology, 2023.
|
[5] |
ITU Telecommunication Standardization Sector. Computing power network—Framework and architecture: Recommendation ITU-T Y.2501—2021 [S]. Switzerland: ITU, 2021: 1‒9.
|
[6] |
刘韵洁, 黄韬, 汪硕. 关于未来网络技术体系创新的思考 [J]. 中国科学院院刊, 2022, 37(1): 38‒45.
Liu Y J, Huang T, Wang S. Thoughts on innovation of future network architecture [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(1): 38‒45.
|
[7] |
Otto B. A federated infrastructure for European data spaces [J]. Communications of the ACM, 2022, 65(4): 44‒45.
|
[8] |
工业互联网产业联盟, 中国信息通信研究院. 可信工业数据空间系统架构1.0 [R]. 北京: 工业互联网产业联盟, 2022.
Alliance of Industrial Internet, China Academy of Information and Communications Technology. Trusted industrial data space system architecture 1.0 [R]. Beijing: Alliance of Industrial Internet, 2022.
|
[9] |
Crichigno J, Bou-Harb E, Ghani N. A comprehensive tutorial on science DMZ [J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 2041‒2078.
|
[10] |
Finn N, Thubert P, Varga B, et al. Deterministic networking architecture: RFC 8655—2019 [S]. Wilmington: Internet Engineering Task Force (IETF), 2019: 1‒38.
|
[11] |
Michel O, Bifulco R, Rétvári G, et al. The programmable data plane: Abstractions, architectures, algorithms, and applications [J]. ACM Computing Surveys, 2021, 54(4): 1‒36.
|
[12] |
Kianpisheh S, Taleb T. A survey on in-network computing: Programmable data plane and technology specific applications [J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 701‒761.
|
[13] |
汪庆, 李俊儒, 舒继武. 在网存储系统研究综述 [J]. 计算机研究与发展, 2023, 60(11): 2681‒2695.
Wang Q, Li J R, Shu J W. Survey on in-network storage systems [J]. Journal of Computer Research and Development, 2023, 60(11): 2681‒2695.
|
[14] |
European Commission. European data strategy [EB/OL]. [2024-09-20]. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy_en.
|
[15] |
Office of Management and Budget, the CDO Council, and the General Services Administration. Federal data strategy [EB/OL]. [2024-09-20]. https://strategy.data.gov/overview/.
|
[16] |
European Association for Data and Cloud AISBL. Gaia-X [EB/OL]. [2024-09-20]. https://gaia-x.eu/wp-content/uploads/2024/01/Gaia-X-Brochure_2024_Online_Spread.pdf.
|
[17] |
Powell B. Accelerating world changing research collaborations, 2022 annual report [R]. Washington DC: Office of Science of U.S. Department of Energy, 2023.
|
[18] |
国家数据局. "数据要素×"三年行动计划(2024—2026年) [EB/OL]. (2024-01-04)[2024-09-20]. https://www.ndrc.gov.cn/hdjl/yjzq/202312/P020231215685140119139.pdf.
National Data Bureau. "Data Elements ×" three-year action plan (2024—2026) [EB/OL]. (2024-01-04)[2024-09-20]. https://www.ndrc.gov.cn/hdjl/yjzq/202312/P020231215685140119139.pdf.
|
[19] |
中华人民共和国工业和信息化部. 关于推动未来产业创新发展的实施意见 [EB/OL]. (2024-01-31)[2024-09-01]. https://zwgk.mct.gov.cn/zfxxgkml/kjjy/202401/t20240131_951102.html.
Ministry of Industry and Information Technology of the People's Republic of China. Implementation opinions on promoting future industrial innovation and development [EB/OL]. (2024-01-31)[2024-09-01]. https://zwgk.mct.gov.cn/zfxxgkml/kjjy/202401/t20240131_951102.html.
|
[20] |
NVIDIA. Networking for the era of AI: The network defines the data center [R]. Santa Clara: Nvidia, 2024.
|
[21] |
Grun P. Introduction to InfiniBand for end users [R]. Beaverton: InfiniBand Trade Association, 2010.
|
[22] |
Nvidia. NVIDIA Spectrum-X network platform architecture [R]. Santa Clara: Nvidia, 2023.
|
[23] |
Wan Z R, Zhang J, Yu M X, et al. BiCC: Bilateral congestion control in cross-datacenter RDMA networks [C]. Vancouver: IEEE INFOCOM 2024—IEEE Conference on Computer Communications, 2024.
|
[24] |
黄韬, 汪硕, 黄玉栋, 等. 确定性网络研究综述 [J]. 通信学报, 2019, 40(6): 160‒176.
Huang T, Wang S, Huang Y D, et al. Survey of the deterministic network [J]. Journal on Communications, 2019, 40(6): 160‒176.
|
[25] |
Huang Y D, Xu M R, Zhang X Y, et al. AI-generated network design: A diffusion model-based learning approach [J]. IEEE Network, 2024, 38(3): 202‒209.
|
/
〈 |
|
〉 |