
新能源航空发动机发展战略研究
Development Strategy of New-Energy Aero-engines
全球采用新能源代替煤炭、石油等化石能源的进程正在加快,新能源及其动力系统正在重塑世界发展格局。落实“双碳”战略目标,保障航空能源安全以及航空业可持续发展,都需要加快推动航空动力从传统化石能源动力到新能源动力的变革。本文总结了太阳能、电能、氢能、核能、氨能、可持续航空燃料等新能源航空动力的发展价值,系统梳理了先进国家和地区采取的新能源发展战略,总结了新能源与航空动力融合的发展态势,综合分析了新能源到航空动力转换的工程实用性和应用场景。研究提出了新能源航空发动机的发展目标和发展重点:大力推动可持续航空燃料与自主航空动力装备协同发展,进一步加强电能和氢能航空动力技术攻关,持续开展太阳能航空动力应用推广和核能航空动力探索研究。研究建议,推动设立新能源航空技术与产业协同发展专项、加快新能源航空动力研发和使用进程、强化新能源航空动力产业的金融财税保障、构建新能源航空动力国际合作生态链,全面提升航空领域的科技创新能力与核心竞争力,支撑先进航空装备更新换代,促进航空产业不断优化升级。
The progress of replacing coal, oil, and other fossil energies with new energy sources is accelerating worldwide. New energy sources and associated power systems are reconfiguring the world’s development pattern. Therefore, it is necessary to accelerate the transformation from traditional fossil-fuel to new-energy aero-engines, thus to achieve carbon peaking and carbon neutrality goals and ensure aviation energy security and sustainable development of the aviation industry. This study summarizes the development values of various new-energy aviation power, including solar, electric, hydrogen, nuclear, and ammonia energy, as well as sustainable aviation fuels. It also reviews the new energy development strategies of developed countries and region, analyzes the trends in integration of new energies with aviation power, and explores the engineering practicability and application scenarios of transformation from new energy sources to aviation power. Moreover, the development goals and priorities are proposed: promoting the coordinated development of sustainable aviation fuels and independent aero-engine products, strengthening research on electric and hydrogen aviation power technologies, promoting the application of solar aviation power, and exploring nuclear aviation power. The following development suggestions are further proposed: (1) establishing a special project for the coordinated development of new energy and aviation technologies and industries, (2) accelerating the research and application of new-energy aero-engines, (3) strengthening financial and fiscal support for the new-energy aero-engine industry, and (4) building an international cooperation ecosystem for new-energy aero-engines. These suggestions aim to comprehensively enhance the technological innovation capability and core competitiveness of the aviation industry, support the upgrading of advanced aviation equipment, and promote the continuous optimization of the industry.
能源安全 / 新能源应用 / 航空发动机 / 可持续航空燃料 / 氢动力 / 电动航空
energy security / application of new energy / aero-engine / sustainable aviation fuel / hydrogen-powered / electric aviation
[1] |
A route for net zero European aviation [EB/OL]. [2024-11-15]. https://www.destination2050.eu/.
|
[2] |
Nesbitt E, Suzuki T, Daneshvarn N, et al. Boeing-Safran landing gear noise reduction project on 2020 Boeing ecoDemonstrator program [R]. Southampton: 28th AIAA/CEAS Aeroacoustics 2022 Conference, 2022.
|
[3] |
ENERGY. Sustainable aviation fuel grand challenge [EB/OL]. [2024-12-14]. https://www.energy.gov/eere/bioenergy/sustainable-aviation-fuel-grand-challenge.
|
[4] |
Bistline J, Blanford G, Brown M, et al. Emissions and energy impacts of the inflation reduction act [J]. Science, 2023, 380(6652): 1324‒1327.
|
[5] |
Scheelhaase J, Grimme W, Maertens S. EU trilogue results for the aviation sector‒key issues and expected impacts [J]. Transportation Research Procedia, 2024, 78: 206‒214.
|
[6] |
Thapa N, Ram S, Kumar S, et al. All electric aircraft: A reality on its way [J]. Materials Today: Proceedings, 2021, 43: 175‒182.
|
[7] |
Rap A, Feng W, Forster P, et al. The climate impact of contrails from hydrogen combustion and fuel cell aircraft [R]. Vienna: The 25th EGU General Assembly, 2023.
|
[8] |
Detsios N, Theodoraki S, Maragoudaki L, et al. Recent advances on alternative aviation fuels/pathways: A critical review [J]. Energies, 2023, 16(4): 1904.
|
[9] |
Shahriar M F, Khanal A. The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF) [J]. Fuel, 2022, 325: 124905.
|
[10] |
International Air Transport Association. Fact sheet: EU and US policy approaches to advance SAF production [EB/OL]. [2021-09-31]. https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/fact-sheet---us-and-eu-saf-policies.pdf.
|
[11] |
中华人民共和国国务院新闻办公室. 中国应对气候变化的政策与行动白皮书 [R]. 北京: 中华人民共和国国务院新闻办公室, 2021.
The State Council Information Office of the People's Republic of China. Responding to climate change: China's policies and actions [R]. Beijing: The State Council Information Office of the People's Republic of China, 2021.
|
[12] |
尹泽勇, 秦亚欣, 李建榕, 等. 新时期我国民用航空发动机自主发展战略研究 [J]. 中国工程科学, 2023, 25(5): 185‒191.
Yin Z Y, Qin Y X, Li J R, et al. Independent development strategy of civil aero-engine in China in the new era [J]. Strategic Study of CAE, 2023, 25(5): 185‒191.
|
[13] |
国务院. 国务院关于印发《2030年前碳达峰行动方案》的通知 [EB/OL]. (2021-10-24)[2024-12-16]. http://www.gov.cn/gongbao/content/2021/content_5649731.htm.
The State Council. Notice of the State Council on printing and distributing the action plan for carbon dioxide peaking before 2030 [EB/OL]. (2021-10-24)[2024-12-16]. http://www.gov.cn/gongbao/content/2021/content_5649731.htm.
|
[14] |
吴光辉, 马静华, 刘倩, 等. 民用航空运输业低碳化发展战略研究 [J]. 中国工程科学, 2023, 25(5): 165‒173.
Wu G H, Ma J H, Liu Q, et al. Low-carbon development of civil aviation industry [J]. Strategic Study of CAE, 2023, 25(5): 165‒173.
|
[15] |
International Civil Aviation Organization. Long term global aspirational goal (LTAG) for international aviation [EB/OL]. (2022-10-11)[2024-12-16]. https://www.icao.int/environmental-protection/Pages/LTAG.aspx.
|
[16] |
International Civil Aviation Organization. State adopt net-zero 2050 global aspirational goal for international flight operations [EB/OL]. (2022-10-07)[2024-12-16]. https://www.icao.int/Newsroom/Pages/States-adopts-netzero-2050-aspirational-goal-for-international-flight-operations.aspx.
|
[17] |
International Civil Aviation Organization. Carbon offsetting and reduction scheme for international aviation [EB/OL]. [2024-12-16]. https://www.icao.int/environmental-protection/CORSIA.
|
[18] |
丁水汀, 杨晓军, 甘宸宇, 等. 负碳航空燃料的新路径探讨 [J]. 航空动力, 2022 (6): 16‒19.
Ding S T, Yang X J, Gan C Y, et al. Discussion on the new path of carbon-negative aviation fuel [J]. Aerospace Power, 2022 (6): 16‒19.
|
[19] |
王翔宇. 欧洲航空业净零排放发展战略分析 [J]. 航空动力, 2021 (4): 14‒18.
Wang X Y. Analysis to the net zero strategy of European aviation [J]. Aerospace Power, 2021 (4): 14‒18.
|
[20] |
Bauk S, Kapidani N, Sousa L, et al. Advantages and disadvantages of some unmanned aerial vehicles deployed in maritime surveillance [R]. Barcelona: The 8th Maritime Conference — MT2020, 2020.
|
[21] |
朱立宏, 孙国瑞, 呼文韬, 等. 太阳能无人机能源系统的关键技术与发展趋势 [J]. 航空学报, 2020, 41(3): 623503.
Zhu L H, Sun G R, Hu W T, et al. Key technology and development trend of energy system in solar powered unmanned aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623503.
|
[22] |
吴健发, 王宏伦, 黄宇. 大跨时空任务背景下的太阳能无人机任务规划技术研究进展 [J]. 航空学报, 2020, 41(3): 623414.
Wu J F, Wang H L, Huang Y. Research development of solar powered UAV mission planning technology in large-scale time and space spans [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623414.
|
[23] |
王翔宇. 电动飞行与推进系统变革 [J]. 航空动力, 2019 (3): 43‒47.
Wang X Y. Electric flight and the technological change of propulsion system [J]. Aerospace Power, 2019 (3): 43‒47.
|
[24] |
高杨. NASA电气化飞机推进系统控制方案分析 [J]. 航空动力, 2023 (2): 34‒38.
Gao Y. Analysis on system-level control schemes in NASA electrified aircraft propulsion program [J]. Aerospace Power, 2023 (2):
34‒38.
|
[25] |
王翔宇, 张平平. eVTOL飞行器与飞行汽车发展思考 [J]. 航空动力, 2024 (3): 24‒28.
Wang X Y, Zhang P P. Thoughts on the development of eVTOL and flying cars [J]. Aerospace Power, 2024 (3): 24‒28.
|
[26] |
梅庆, 金海良, 申余兵. 航空油电混合动力系统设计及试验 [J]. 航空动力, 2023 (1): 39‒42.
Mei Q, Jin H L, Shen Y B. Design and integrated verification of fuel-electric hybrid power system [J]. Aerospace Power, 2023 (1): 39‒42.
|
[27] |
李小平, 张志伟, 王奉明. 核能航空发动机技术进展 [J]. 航空动力, 2018 (3): 16‒20.
Li X P, Zhang Z W, Wang F M. Technical progress on nuclear power aero engine [J]. Aerospace Power, 2018 (3): 16‒20.
|
[28] |
中国日报网. 航天科技六院801所三十载自立自强, 铸就载人航天器金牌动力 [EB/OL]. (2022-09-22)[2024-12-20]. https://baijiahao.baidu.com/s?id=1744656798128215441&wfr=spider&for=pc.
China Daily website. The 801 Institute of the Sixth Academy of Aerospace Science and Technology has achieved self-reliance and self-improvement for thirty years, creating a gold medal power for manned spacecraf [EB/OL]. (2022-09-22)[2024-12-20]. https://baijiahao.baidu.com/s?id=1744656798128215441&wfr=spider&for=pc.
|
[29] |
王志伟. 基于空间核电源系统的氦氙混合工质布雷顿循环特性研究 [D]. 哈尔滨: 哈尔滨工业大学(硕士学位论文), 2021.
Wang Z W. Research on Brayton Cycle Properties Of helium-xenon mixed working fluid based on space nuclear power system [D]. Harbin: Harbin Institute of Technology (Master's thesis), 2021.
|
[30] |
Finnegan J . Universal Hydrogen completes first flight of hydrogen regional airliner [EB/OL]. (2023-03-02)[2024-12-20]. https://www. Businesswire.com/news/home/20230302005768/en/Universal-Hydrogen-Successfully-Completes-First-Flight-of-Hydrogen-Regional-Airliner.
|
[31] |
Norris G. Airbus reveals refined ZEROe blended wing body concept [J]. Aerospace Daily & Defense Report, 2022, 279(35): 13‒14.
|
[32] |
Manfred H, Stephan B. Regional air mobility: How to unlock a new era of aviation [EB/OL]. (2022-06-21)[2024-12-20]. https://www.rolandberger.com/en/Insights/Publications/Regional-Air-Mobility-Howto-unlock-a-new-era-of-aviation.html.
|
[33] |
韩玉琪. 2023年航空氢动力进展 [J]. 航空动力, 2024 (1): 38‒42.
Han Y Q. Progress of hydrogen powered aviation in 2023 [J]. Aerospace Power, 2024 (1): 38‒42.
|
[34] |
韩玉琪, 王则皓, 谭米. 2022航空氢动力研发进展 [J]. 航空动力, 2023 (2): 13‒16.
Han Y Q, Wang Z H, Tan M. Development progress of hydrogen powered aviation in 2022 [J]. Aerospace Power, 2023 (2): 13‒16.
|
[35] |
韩玉琪, 袁善虎, 王飒. "碳中和" 目标牵引下的航空动力发展分析 [J]. 航空动力, 2021 (6): 28‒30.
Han Y Q, Yuan S H, Wang S. Analysis to the development of aero engine to achieve carbon neutrality [J]. Aerospace Power, 2021 (6): 28‒30.
|
[36] |
宋薇薇, 杨凤田, 项松, 等. 氢能飞机研制进展及产业化前景分析 [J]. 中国工程科学, 2023, 25(5): 192‒201.
Song W W, Yang F T, Xiang S, et al. Development progress and industrialization prospect of hydrogen-powered aircraft [J]. Strategic Study of CAE, 2023, 25(5): 192‒201.
|
[37] |
王翔宇, 刘锋. 航空氨动力发展分析 [J]. 航空动力, 2023 (4): 31‒34.
Wang X Y, Liu F. Develepment of ammonia powered aviation [J]. Aerospace Power, 2023 (4): 31‒34.
|
[38] |
王翔宇. 可持续航空燃料发展展望 [J]. 航空动力, 2022 (2): 24‒28.
Wang X Y. Sustainable aviation fuel outlook [J]. Aerospace Power, 2022 (2): 24‒28.
|
[39] |
杨晓军, 侯德铭, 袁中楠, 等. 可持续航空燃料与我国大飞机绿色发展 [J]. 大飞机, 2023 (5): 22‒26.
Yang X J, Hou D M, Yuan Z N, et al. Sustainable aviation fuel and green development of large aircraft in China [J]. Jetliner, 2023 (5): 22‒26.
|
[40] |
北京大学能源研究院. 中国可持续航空燃料发展研究报告现状与展望 [R]. 北京: 北京大学能源研究院, 2022.
Institute of Energy of Peking University. The present and future of sustainable aviation fuels in China [R]. Beijing: Institute of Energy of Peking University, 2022.
|
/
〈 |
|
〉 |