
电能航空动力技术发展研究
Development of Electric Propulsion Technology in Aviation
电能航空动力技术开启了航空领域新一轮创新与变革热潮,是推进航空业绿色发展、应对全球环境挑战的重要举措。本文系统论述了国内外电动航空器的研究进展,分析了我国电能航空动力技术与国外的差距,明晰了我国电动航空器研制所面临的技术挑战;进一步梳理了电能航空动力四大关键技术:长寿命高能量密度电池技术、高效高功重比电机推进技术、能量综合管理技术和高升阻比气动布局设计技术,分析了各关键技术的产业特征和研究现状,阐明了各关键技术的发展方向和亟待解决的基础技术问题;构建了电能航空动力飞机性能评估模型,分析了电池能量密度、电机功率密度、电机效率和飞机升阻比等关键技术参数对电动航空器性能的影响,评估了电能航空动力技术在轻小型城市空运飞机、区域通勤飞机和小型支线飞机上的工程实用性。研究建议,电能航空动力技术发展应充分利用我国拥有的新能源产业的技术积累和先进工业基础,考虑高能量密度储能电池、高效能推进系统等关键部件的现有性能与未来提升需求,以城市空运、区域通勤、支线飞机为路径制定发展战略规划,逐步拓展电能航空动力技术在民航运输中的应用,助力我国实现碳达峰、碳中和目标。
The electric propulsion of aircraft has triggered a new wave of innovation and reform in the aviation sector. It is considered as an important move to implementing green development in aviation and addressing global environmental challenges. This study examines the research progress of the electric propulsion technology in aviation and reveals the technology gap between China and other countries, clarifying the technology challenges for developing electric aircraft in China. Four key technologies regarding electric propulsion in aviation are identified: long-life and high-energy-density batteries, electric propulsion with high efficiency and a high power-to-weight ratio, integrated management of energy, and aerodynamic configuration with a high lift-to-drag ratio. The industry characteristics and research status of the above technologies are investigated, and their future directions as well as the fundamental technical problems are clarified. Based on a performance evaluation model for electric aircraft, the influence of key technical parameters on the performance of electric aircraft are analyzed; these parameters include energy density of batteries, power-to-weight ratio and efficiency of motors, and lift-to-drag ratio of aircraft. Besides, the practicability of applying full electric propulsion on aircraft for urban air transport, commuter transport, and regional use are evaluated. By cconsidering the current status and future development of key components such as high-energy-density storage batteries and high-performance propulsion systems, China should leverage its technological accumulation in the renewable energy industry and its advanced industrial foundation to establish a strategic plan for the development of electric aircraft oriented at urban air transport, commuter transport, and regional use, gradually extending the application of electric propulsion in civil aviation.
电能航空动力 / 电动航空器 / 电推进 / 绿色航空 / 储能电池
electric propulsion in aviation / electric aircraft / electric propulsion / green aviation / energy storage battery
[1] |
Federal Aviation Administration. United States 2021 aviation climate action plan [EB/OL]. (2021-11-09)[2024-12-15]. https://www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf.
|
[2] |
韩玉琪, 王则皓, 付玉. 欧盟清洁航空计划分析 [J]. 航空动力, 2023 (2): 28‒30.
Han Y Q, Wang Z H, Fu Y. Analysis of European Union's clean aviation program [J]. Aerospace Power, 2023 (2): 28‒30.
|
[3] |
王翔宇, 张平平. IATA航空净零排放发展路线图分析 [J]. 航空动力, 2024 (1): 50‒55.
Wang X Y, Zhang P P. Roadmap of IATA net zero carbon emissions for aviation [J]. Aerospace Power, 2024 (1): 50‒55.
|
[4] |
张卓然, 陆嘉伟, 张伟秋, 等. 飞机电推进系统高效能电机及其驱动控制技术 [J]. 中国电机工程学报, 2024, 44(16): 6610‒6632.
Zhang Z R, Lu J W, Zhang W Q, et al. High-performance electric machine and drive technologies for aircraft electric propulsion systems [J]. Proceedings of the CSEE, 2024, 44(16): 6610‒6632.
|
[5] |
O'Connell T. Fundamentals of more electric aircraft design [R]. Chicago: IEEE Transportation Electrification Conference (ITEC), 2017.
|
[6] |
NASA Glenn Research Center. Electric propulsion system studies [EB/OL]. (2015-11-30)[2024-12-15]. https://ntrs.nasa.gov/api/citations/20160009274/downloads/20160009274.pdf.
|
[7] |
秦江, 姬志行, 郭发福, 等. 航空用燃料电池及混合电推进系统发展综述 [J]. 推进技术, 2022, 43(7): 6‒23.
Qin J, Ji Z X, Guo F F, et al. Review of aviation fuel cell and hybrid electric propulsion systems [J]. Journal of Propulsion Technology, 2022, 43(7): 6‒23.
|
[8] |
黄俊, 杨凤田. 新能源电动飞机发展与挑战 [J]. 航空学报, 2016, 37(1): 57‒68.
Huang J, Yang F T. Development and challenges of electric aircraft with new energies [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57‒68.
|
[9] |
孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述 [J]. 航空学报, 2018, 39(1): 021651.
Kong X H, Zhang Z R, Lu J W, et al. Review of electric power system of distributed electric propulsion aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651.
|
[10] |
Jansen R, Bowman C, Jankovsky A, et al. Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports [R]. Atlanta: 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017.
|
[11] |
David D, Simon B, Malcolm F, et al. Zero-carbon emission aircraft concepts [R]. Cranfield: Aerospace Technology Institute, 2022.
|
[12] |
李开省. 电动飞机核心技术研究综述 [J]. 航空科学技术, 2019, 30(11): 8‒17.
Li K S. Summary of research on core technology of electric aircraft [J]. Aeronautical Science & Technology, 2019, 30(11): 8‒17.
|
[13] |
Chen W D, Liang J, Yang Z H, et al. A review of lithium-ion battery for electric vehicle applications and beyond [J]. Energy Procedia, 2019, 158: 4363‒4368.
|
[14] |
Yang Z F, Wang J, Cui C J, et al. High power density & energy density Li-ion battery with aluminum foam enhanced electrode: Fabrication and simulation [J]. Journal of Power Sources, 2022, 524: 230977.
|
[15] |
Gao Y, Guo Q Y, Zhang Q, et al. Fibrous materials for flexible Li‒S battery [J]. Advanced Energy Materials, 2021, 11(15): 2002580.
|
[16] |
Wang L, Pan J, Zhang Y, et al. A Li‒air battery with ultralong cycle life in ambient air [J]. Advanced Materials, 2018, 30(3): 1704378.
|
[17] |
Felseghi R A, Carcadea E, Raboaca M S, et al. Hydrogen fuel cell technology for the sustainable future of stationary applications [J]. Energies, 2019, 12(23): 4593.
|
[18] |
Sanchez R, Yoon A, Yi X, et al. Mechanical validation of a high power density external cantilevered rotor [J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3208‒3216.
|
[19] |
Golovanov D, Gerada D, Sala G, et al. 4-MW class high-power-density generator for future hybrid-electric aircraft [J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2952‒2964.
|
[20] |
Scheidler J J, Tallerico T F, Miller W A, et al. Progress toward the critical design of the superconducting rotor for NASA's 1.4 MW high-efficiency electric machine [R]. Indianapolis: 2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), 2019.
|
[21] |
Sugouchi R, Komiya M, Miura S, et al. Conceptual design and electromagnetic analysis of 2 MW fully superconducting synchronous motors with superconducting magnetic shields for turbo-electric propulsion system [J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 1‒5.
|
[22] |
Komiya M, Aikawa T, Sasa H, et al. Design study of 10 MW REBCO fully superconducting synchronous generator for electric aircraft [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 5204306.
|
[23] |
Chapman J W, Schnulo S L, Nitzsche M P. Development of a thermal management system for electrified aircraft [R]. Orlando: AIAA Scitech 2020 Forum, 2020.
|
[24] |
Jones C E, Norman P J, Galloway S J, et al. Comparison of candidate architectures for future distributed propulsion aircraft [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6): 1‒9.
|
[25] |
Deisenroth D C, Ohadi M. Thermal management of high-power density electric motors for electrification of aviation and beyond [J]. Energies, 2019, 12(19): 3594.
|
[26] |
Wu F, EL-Refaie A M. Additively manufactured hollow conductors integrated with heat pipes: Design tradeoffs and hardware demonstration [R]. Gothenburg: 2020 International Conference on Electrical Machines (ICEM), 2020.
|
[27] |
段辰龙, 李岩, 徐悦, 等. 电动飞机发展关键技术与总体性能关联性分析 [J]. 飞行力学, 2021, 39(2): 39‒44.
Duan C L, Li Y, Xu Y, et al. Analysis on the relationship of key technology for electric aircraft development and overall performance [J]. Flight Dynamics, 2021, 39(2): 39‒44.
|
[28] |
刘福佳, 杨凤田, 刘远强, 等. 电动轻型飞机电推进系统选型与参数匹配 [J]. 南京航空航天大学学报, 2019, 51(3): 350‒356.
Liu F J, Yang F T, Liu Y Q, et al. Type selection and parameter matching of electric light aircraft propulsion system [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(3): 350‒356.
|
[29] |
刘福佳, 杨凤田, 刘孟诏, 等. 电动轻型飞机起飞总质量估算方法 [J]. 科学技术与工程, 2018, 18(5): 118‒123.
Liu F J, Yang F T, Liu M Z, et al. Estimated method of the take-off mass of the electric light aircraft [J]. Science Technology and Engineering, 2018, 18(5): 118‒123.
|
[30] |
康桂文, 胡雨, 李亚东, 等. 超轻型电动飞机电动力系统的参数匹配 [J]. 航空动力学报, 2013, 28(12): 2641‒2647.
Kang G W, Hu Y, Li Y D, et al. Parameters matching of ultralight electric aircraft propulsion system [J]. Journal of Aerospace Power, 2013, 28(12): 2641‒2647.
|
[31] |
孙侠生, 程文渊, 穆作栋, 等. 电动飞机发展白皮书 [J]. 航空科学技术, 2019, 30(11): 1‒7.
Sun X S, Cheng W Y, Mu Z D, et al. White paper on the development of electric aircraft [J]. Aeronautical Science & Technology, 2019, 30(11): 1‒7.
|
/
〈 |
|
〉 |