
深海工程技术在深空探测领域应用前瞻
Prospect on Application of Deep-Sea Engineering Technology in Deep-Space Exploration
随着“三深”(深空、深海、深地)技术研究的不断深入,发现深海工程与深空探测存在诸多技术联系,研究深海工程技术在深空探测领域的应用将有利于助力“三深”技术发展。本文从对比深空与深海环境特征角度出发,揭示了深海工程与深空探测技术在压力、温度适应性方面存在一定相似性,进一步分别从结构安全性、复杂作业技术与装备、无人智能化与载荷小型化、试验场建设等方面展开了前瞻性探索。分析发现,地外空间物理特征的多样性十分突出,部分热点星球的空间环境与深海环境存在较强的相似性,具体体现在压力及腐蚀环境等方面,这使得深海结构物的设计与防腐技术具备向深空探测领域的移植性;同时深空探测对于装备的复杂控制、无人自动化程度需求与深海装备的目标是一致的,具体的装备研制技术具备互换基础;海底火山区以及南极冰下湖存在非常明显的类地外空间特征,面向深空探测具备建立试验场的环境条件,可作为未来深海试验场以及深空探测新型试验技术的研究方向。综上所述,随着深海与深空技术的不断发展,两者之间的技术互换以及跨域应用已经显现出较高的可能性,将深海工程技术充分地应用于深空探测领域,将助力我国深空探测装备更快发展。
With the further development of deep-space, deep-sea, and deep-ground technologies, numerous technical connections are found existing between deep-sea engineering and deep-space exploration and thus it is feasible to apply deep-sea engineering technologies to deep-space exploration. By comparing the environmental characteristics of deep space and deep sea, this study reveals the similarities between deep-sea engineering and deep-space exploration in terms of pressure and temperature adaptability. Then, it explores the prospects on structural safety, complex operation technology and equipment, unmanned intelligence and miniaturization of loads, and construction of test sites. It is found that the physical characteristics of the extraterrestrial space is prominently diversified, and the environment of some hotspot planets is similar to that of the deep sea in terms of pressure and corrosion. Therefore, the structure design and anticorrosion technologies regarding deep-sea engineering can be applied to deep-space exploration. Meanwhile, the requirements for complex control and unmanned automation of deep-space exploration equipment are consistent with those of deep-sea engineering equipment; therefore, the research and development of specific equipment from these two fields are interchangeable. The submarine volcanic areas and the Antarctic subglacial lake (i.e., Lake Vostok) have obvious extraterrestrial space characteristics and can be established as test sites for deep-space exploration, which can be regarded as a research direction for deep-sea test sites and new test technologies for deep-space exploration. To sum up, technology exchange and cross-domain application between the deep-sea and deep-space technologies are highly possible, and the full application of deep-sea engineering technologies to deep-space exploration will help China’s deep-space exploration equipment develop faster.
深海工程 / 深空探测 / 结构安全性 / 作业装备 / 智能化与小型化 / 深海试验场
deep-sea engineering / deep-space exploration / structural safety / operation equipment / intelligence and miniaturization / deep-sea test site
[1] |
刘继忠, 葛平, 康焱, 等. 深空探测科学目标谱系构建方案探索 [J]. 深空探测学报(中英文), 2024, 11(1): 79‒89.
Liu J Z, Ge P, Kang Y, et al. Study on the construction scheme of mega interconnected knowledge systems in deep space exploration [J]. Journal of Deep Space Exploration, 2024, 11(1): 79‒89.
|
[2] |
张扬眉. 2023年国外深空探测领域发展综述 [J]. 国际太空, 2024 (3): 11‒15.
Zhang Y M. A summary of the development of deep space exploration abroad in 2023 [J]. Space International, 2024 (3): 11‒15.
|
[3] |
于登云, 马继楠. 中国深空探测进展与展望 [J]. 前瞻科技, 2022, 1(1): 17‒27.
Yu D Y, Ma J N. Progress and prospect of deep space exploration in China [J]. Science and Technology Foresight, 2022, 1(1): 17‒27.
|
[4] |
付毅飞. 嫦娥六号再创中国航天的世界纪录 [N]. 科技日报, 2024-06-28(01).
Fu Y F. Chang'e 6: A new world record in China's space endeavors [N]. Science & Technology Daily, 2024-06-28(01).
|
[5] |
于登云, 孙泽洲, 孟林智, 等. 火星探测发展历程与未来展望 [J]. 深空探测学报, 2016, 3(2): 108‒113.
Yu D Y, Sun Z Z, Meng L Z, et al. The development process and prospects for Mars exploration [J]. Journal of Deep Space Exploration, 2016, 3(2): 108‒113.
|
[6] |
Pollack J B, Toon O B, Boese R. Greenhouse models of Venus' high surface temperature, as constrained by Pioneer Venus measurements [J]. Journal of Geophysical Research: Space Physics, 1980, 85(A13): 8223‒8231.
|
[7] |
张佳欣. 木卫二上可能存在新型咸冰 [N]. 科技日报, 2023-02-23(04).
Zhang J X. Possible existence of a new type of salty ice on Europa [N]. Science & Technology Daily, 2023-02-23(04).
|
[8] |
朱日祥, 侯增谦, 郭正堂, 等. 宜居地球的过去、现在与未来——地球科学发展战略概要 [J]. 科学通报, 2021, 66(35): 4485‒4490.
Zhu R X, Hou Z Q, Guo Z T, et al. Summary of "the past, present and future of the habitable Earth: Development strategy of Earth science" [J]. Chinese Science Bulletin, 2021, 66(35): 4485‒4490.
|
[9] |
Johnson N M, de Oliveira M R R. Venus atmospheric composition in situ data: A compilation [J]. Earth and Space Science, 2019, 6(7): 1299‒1318.
|
[10] |
Kawabata K, Coffeen D L, Hansen J E, et al. Cloud and haze properties from pioneer Venus polarimetry [J]. Journal of Geophysical Research: Space Physics, 1980, 85(A13): 8129‒8140.
|
[11] |
Basilevsky A T, Head J W. The surface of Venus [J]. Reports on Progress in Physics, 2003, 66(10): 1699‒1734.
|
[12] |
McFadden L A, Weissman P R, Johnson T V. Encyclopedia of the solar system [M]. Amsterdam: Elsevier, 2007
|
[13] |
Steinbrügge G, Voigt J R C, Wolfenbarger N S. et al. Brine migration and impact-induced cryovolcanism on Europa [J]. Geophysical Research Letters, 2020,47(21): e2020GL090797.
|
[14] |
Daswani M M, Vance S D, Mayne M J, et al. A metamorphic origin for Europa's Ocean [J]. Geophysical Research Letters, 2021, 48(18): e2021GL094143.
|
[15] |
Joseph A. Water worlds in the solar system [M]. Amsterdam: Elsevier, 2023.
|
[16] |
Thomas P C, Tajeddine R, Tiscareno M S, et al. Enceladus's measured physical libration requires a global subsurface ocean [J]. Icarus, 2016, 264: 37‒47.
|
[17] |
Siegert M J, Ellis-Evans J C, Tranter M, et al. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes [J]. Nature, 2001, 414(6864): 603‒609.
|
[18] |
温家洪. 南极冰下湖的发现及其意义 [J]. 极地研究, 1998, 10(2): 155‒160.
Wen J H. A primary introduction of Antarctic subglacial lakes [J]. Chinese Journal of Polar Research, 1998, 10(2): 155‒160.
|
[19] |
刘涛. 深海载人潜水器耐压球壳设计特性分析 [J]. 船舶力学, 2007, 11(2): 214‒220.
Liu T. Research on the design of spherical pressure hull in manned deep-sea submersible [J]. Journal of Ship Mechanics, 2007, 11(2): 214‒220.
|
[20] |
中国船级社. 潜水系统和潜水器入级与建造规范: 1996 [M]. 北京: 人民交通出版社, 1996.
China Classification Society. Rules for the classification and construction of diving systems and submersibles: 1996 [M]. Beijing: China Communications Press, 1996.
|
[21] |
Yu X Y, Zhang H, Ji H T, et al. Investigation of the influence of distribution of defections along the axial direction on eternal ultimate strength of titanium alloy pressure hulls of long barrel shape [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236(6/7): 715‒725.
|
[22] |
Wells A A. Application of fracture mechanics at and beyond general yielding [J]. British Welding Journal, 1963, 10: 563‒570.
|
[23] |
Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate [J]. Journal of Applied Mechanics, 1957, 24(3): 361‒364.
|
[24] |
Dowling A R, Townley C H A. The effect of defects on structural failure [J]. International Journal of Pressure Vessels and Piping, 1975, 3(2): 77‒107.
|
[25] |
Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks [J]. Journal of Applied Mechanics, 1968, 35(2): 379.
|
[26] |
Yu X Y, Chen J, Chen J S. Interaction effect of cracks and anisotropic influence on degradation of edge stretchability in hole-expansion of advanced high strength steel [J]. International Journal of Mechanical Sciences, 2016, 105: 348‒359.
|
[27] |
Yu X Y, Chen J S, Chen J. A method for evaluating the degradation of edge stretchability incorporating punching damage based on Marciniak and Kuczynski model [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(11): 2102‒2113.
|
[28] |
Paik J K. Ultimate strength of ships time-variant risk assessment of aging ship staking account to general/pit corrosion, fatigue cracking and local dent damage [R]. Houston: American Bureau of Shipping, 2002.
|
[29] |
徐强, 万正权. 含坑点腐蚀的深海耐压球壳有限元分析 [J]. 船舶力学, 2011, 15(5): 498‒505.
Xu Q, Wan Z Q. FE analysis of deep-sea sphere shell with Pitting corrosion under pressure [J]. Journal of Ship Mechanics, 2011, 15(5): 498‒505.
|
[30] |
Zhang H, Wang Y J, Chen X X, et al. Corrosion behaviors of Al2O3-20TiO2 and Cr2O3-3TiO2-5SiO2 coatings in both artificial seawater and high-pressure hydrogen sulfide seawater [J]. Ceramics International, 2024, 50(18): 34346‒34356.
|
[31] |
Zeng X, Chen X X, Wang Y J, et al. Corrosion behavior of Al2O3-40TiO2 coating deposited on 20MnNiMo steel via atmospheric plasma spraying in hydrogen sulfide seawater stress environments [J]. Coatings, 2024,14:588.
|
[32] |
周鸿铃, 杜钢, 杨杰, 等. 变压器用丁腈橡胶与氟橡胶密封材料的溶胀特性研究 [J]. 高压电器, 2022, 58(6): 121‒127.
Zhou H L, Du G, Yang J, et al. Study on swelling characteristics of nitrile rubber and fluororubber sealing material of transformer [J]. High Voltage Apparatus, 2022, 58(6): 121‒127.
|
[33] |
吴刚. 从“雪龙2” 号研制谈中国极地装备发展 [J]. 船舶工程, 2021, 43(7): 7‒13.
Wu G. Discussion on the development of polar equipment in China from the development of "Snow Dragon 2" [J]. Ship Engineering, 2021, 43(7): 7‒13.
|
[34] |
叶其斌, 刘振宇, 王国栋. 极地船舶用低温钢发展 [R]. 上海: 第十届中国钢铁年会暨第六届宝钢学术年会, 2015.
Ye Q B, Liu Z Y, Wang G D. Development of Low - temperature Steels for Polar Ships [R]. ShangHai: The 10th China Iron and Steel Congress & the 6th Baosteel Academic Annual Conference, 2015.
|
[35] |
马涛, 曹忠孝, 陈小娟, 等. 厚钢板EH40低温CTOD韧性试验研究 [J]. 船海工程, 2010, 39(5): 230‒233.
Ma T, Cao Z X, Chen X J, et al. Low temperature CTOD toughness test for EH40 thick steel plate [J]. Ship & Ocean Engineering, 2010, 39(5): 230‒233.
|
[36] |
王超逸, 洪晓莉, 严玲, 等. 460 MPa极地船舶用钢及焊接接头低温力学性能 [J]. 中国冶金, 2024, 34(7): 58‒67.
Wang C Y, Hong X L, Yan L, et al. Low temperature mechanical properties of 460 MPa polar ship steel and its welded joints [J]. China Metallurgy, 2024, 34(7): 58‒67.
|
[37] |
刘志丹. TA7和TB2及TC4钛合金低温准静态拉伸行为研究 [D]. 哈尔滨: 哈尔滨工业大学(硕士学位论文), 2019.
Liu Z D. Research on the low-temperature quasi-static tensile behavior of TA7, TB2 and TC4 titanium alloys [D]. Harbin: Harbin Institute of Technology (Master's thesis), 2019.
|
[38] |
Ghisi A, Mariani S. Mechanical characterization of Ti-5Al-2.5Sn ELI alloy at cryogenic and room temperatures [J]. International Journal of Fracture, 2007, 146(1): 61‒77.
|
[39] |
Sun Q Y, Gu H C. Tensile an low-cycle fatigue behavior of commercially pure titanium and Ti-5Al-2.5Sn alloy at 293 and 77K [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001, 316(1‒2): 80‒86.
|
[40] |
Du Z F, Li Y, Chen J, et al. Feasibility investigation on deep ocean compact autonomous Raman spectrometer developed for in situ detection of acid radical ions [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(2): 545‒550.
|
[41] |
董一飞, 罗文造, 梁前勇, 等. 坐底式潜标观测系统及其在天然气水合物区的试验性应用 [J]. 海洋地质与第四纪地质, 2017, 37(5): 195‒203.
Dong Y F, Luo W Z, Liang Q Y, et al. A newly developed bottom-supported submersible buoyant system and its testing application to a natural gas hydrate area [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 195‒203.
|
[42] |
Zhang X, Li L F, Du Z F, et al. Discovery of supercritical carbon dioxide in a hydrothermal system [J]. Science Bulletin, 2020, 65(11): 958‒964.
|
[43] |
周朋, 王豪, 张培豪, 等. 全海深沉积物保压取样装置设计及试验研究 [J]. 工程科学与技术, 2023, 55(2): 252‒258.
Zhou P, Wang H, Zhang P H, et al. Design and experimental study of pressure-retaining sampling device for sediments in hadal trenches [J]. Advanced Engineering Sciences, 2023, 55(2): 252‒258.
|
[44] |
许可, 赵飞虎, 周鑫涛, 等. 深海生物原位保温保压装置设计方案研究 [J]. 机械研究与应用, 2022, 35(2): 62‒66.
Xu K, Zhao F H, Zhou X T, et al. Research on scheme of in situ temperature and pressure preserving device for deep sea creatures [J]. Mechanical Research & Application, 2022, 35(2): 62‒66.
|
[45] |
Gao Q L, Chen J W, Liu J B, et al. Research on pressure-stabilizing system for transfer device for natural gas hydrate cores [J]. Energy Science & Engineering, 2020, 8(4): 973‒985.
|
[46] |
Zhou Q X, Wang H, Zhang P H, et al. Research on the isobaric transfer method and device for sediment of full-ocean depth [J]. Marine Technology Society Journal, 2023, 57(1): 44‒51.
|
[47] |
董自珍, 刘纯虎, 张宇. 深海微生物原位自动序列培养装置的研发与试验 [J]. 热带海洋学报, 2024, 43(5): 131‒142.
Dong Z Z, Liu C H, Zhang Y. Development and testing of a deep-sea microorganism ocean automatic series incubation system [J]. Journal of Tropical Oceanography, 2024, 43(5): 131‒142.
|
[48] |
Schilling robotics TITAN 4 manipulator [R/OL]. Newcastle: TechnipFMC, 2018 [2025-02-25]. https://www.technipfmc.com/media/pb4i4rfy/titan-4-manipulator.pdf.
|
[49] |
RAPTOR: Force feedback manipulator [R/OL]. Kansas: Kraft TeleRobotics, 2015 [2025-02-25]. http://krafttelerobotics.com/products/raptor.htm.
|
[50] |
HLK-5680:6 Function manipulator [R/OL]. Hampshire: HYDRO-LEK, 2019 [2025-02-25]. http://www.hydro-lek.com/datasheets/Manipulators/HLK-5680_Rev_2.pdf.
|
[51] |
Magnum 5: A Rugged 5-function subsea manipulator [R/OL]. Coquitlam: International Submarine Engineering, 2015 [2025-02-25]. http://207.102.77.253/Magnum-5.html.
|
[52] |
张奇峰. 7000米深海主从伺服液压机械手 [R]. 沈阳: 中国科学院沈阳自动化研究所, 2016.
Zangh Q F. 7000 m deep sea master slave servo hydraulic manipulator [R]. Shenyang:Shenyang Institute of Automation, Chinese Academy of Sciences, 2016.
|
[53] |
Sivčev S, Coleman J, Omerdić E, et al. Underwater manipulators: A review [J]. Ocean Engineering, 2018, 163: 431‒450.
|
[54] |
Fernandez J J, Prats M, Sanz P J, et al. Grasping for the seabed: Developing a new underwater robot arm for shallow-water intervention [J]. IEEE Robotics & Automation Magazine, 2013, 20(4): 121‒130.
|
[55] |
王伟灿, 吴德发, 张浩, 等. 超高压海水泵水润滑轴承承载与散热仿真分析 [J]. 液压与气动, 2023, 47(11): 55‒60.
Wang W C, Wu D F, Zhang H, et al. Simulation analysis of deepsea water-lubricated bearing support and heat dissipation in ultra-high pressure sea water pump [J]. Chinese Hydraulics & Pneumatics, 2023, 47(11): 55‒60.
|
[56] |
Thorleifson J M, Davies T C, Black M R, et al. The Theseus autonomous underwater vehicle. A Canadian success story [C]. Halifax: IEEE Conference, 1997.
|
[57] |
Bellingham J G, Deffenbaugh M, Leonard J J, et al. Arctic under-ice survey operations [R]. New Hampshire: International Symposium on Unmanned Untethered Submersible Technology, 1993.
|
[58] |
McEwen R, Thomas H, Weber D, et al. Performance of an AUV navigation system at Arctic latitudes [J]. IEEE Journal of Oceanic Engineering, 2005, 30(2): 443‒454.
|
[59] |
Kunz C, Murphy C, Camilli R, et al. Deep sea underwater robotic exploration in the ice-covered Arctic ocean with AUVs [C]. Nice: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.
|
[60] |
马超, 孙京, 刘宾, 等. 嫦娥探测器分段渐倾转移机构设计 [J]. 航空学报, 2019, 40(10): 223014.
Ma C, Sun J, Liu B, et al. Design of rover transfer mechanism for Chang'e probe [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 223014.
|
[61] |
Vaquero T S, Daddi G, Thakker R, et al. EELS: Autonomous snake-like robot with task and motion planning capabilities for ice world exploration [J]. Science Robotics, 2024, 9(88): eadh8332.
|
[62] |
Resing J A, Rubin K H, Embley R W, et al. Active submarine eruption of boninite in the northeastern Lau Basin [J]. Nature Geoscience, 2011, 4(11): 799‒806.
|
[63] |
Chadwick W W Jr, Rubin K H, Merle S G, et al. Recent eruptions between 2012 and 2018 discovered at west mata submarine volcano (NE lau basin, SW Pacific) and characterized by new ship, AUV, and ROV data [J]. Frontiers in Marine Science, 2019, 6: 495.
|
[64] |
Shim H, Jun B H, Lee P M, et al. Workspace control system of underwater tele-operated manipulators on an ROV [J]. Ocean Engineering, 2010, 37(11/12): 1036‒1047.
|
[65] |
Li G R, Chen X P, Zhou F H, et al. Self-powered soft robot in the Mariana trench [J]. Nature, 2021, 591(7848): 66‒71.
|
[66] |
Berlinger F, Gauci M, Nagpal R. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm [J]. Science Robotics, 2021, 6(50): eabd8668.
|
[67] |
李彦, 罗续业, 路宽. 潮流能、波浪能海上试验与测试场建设主要问题分析 [J]. 海洋开发与管理, 2013, 30(2): 36‒39.
Li Y, Luo X Y, Lu K. Analysis of main problems in the construction of tidal current energy and wave energy offshore test and test site [J]. Ocean Development and Management, 2013, 30(2): 36‒39.
|
[68] |
马帅, 王勋龙, 王丽, 等. 海上试验场建设现状分析及经验借鉴 [J]. 中国工程咨询, 2023 (4): 46‒51.
Ma S, Wang X L, Wang L, et al. Analysis of the present situation of offshore test site construction and its experience for reference [J]. China Engineering Consultants, 2023 (4): 46‒51.
|
/
〈 |
|
〉 |