综合交通基础设施混凝土结构耐久性提升研究

李化建, 马成贤, 杨志强, 董昊良, 易忠来

中国工程科学 ›› 2025, Vol. 27 ›› Issue (1) : 226-235.

PDF(893 KB)
PDF(893 KB)
中国工程科学 ›› 2025, Vol. 27 ›› Issue (1) : 226-235. DOI: 10.15302/J-SSCAE-2024.11.002
综合交通运输体系效率提升战略

综合交通基础设施混凝土结构耐久性提升研究

作者信息 +

Durability Improvement Strategies for Concrete Structures of Comprehensive Transport Infrastructure

Author information +
History +

摘要

铁路、公路、水运、民航是我国重要的交通基础设施,混凝土结构是交通基础设施的主要结构类型,提升交通基础设施混凝土结构耐久性能是保障交通安全、提升运输效能、延长结构服役寿命的重要途径。本文全面调研分析了我国交通基础设施混凝土结构的服役现状,结合国情和实情从设计理论、建造技术、运维制度等角度探讨了我国混凝土结构耐久性面临的问题与挑战,梳理了先进交通基础设施混凝土结构表面裂纹、渗透性能、内部损伤与钢筋锈蚀监测技术,概述了交通基础设施混凝土结构精准维修技术。研究提出了我国综合交通基础设施混凝土结构耐久性提升的对策建议:做好顶层设计、强化科技创新、完善标准体系,全面保障综合交通基础设施混凝土结构长寿命安全服役。

Abstract

Transport infrastructures, including railways, highways, waterways, and civil aviation systems, rely heavily on reinforced concrete as their primary structural material. Ensuring the durability of concrete structures is critical for maintaining transport safety, improving transportation efficiency, and extending service life. This study investigates the service status of transport infrastructure concrete structures and identifies key durability issues and challenges related to design theories, construction technologies, and operational systems. Advanced monitoring technologies for surface microcracks, ion permeation, internal damage, and reinforcement corrosion are reviewed, alongside precise maintenance technologies for concrete structures. Based on these findings, recommendations for enhancing the durability of these concrete structures are proposed, emphasizing the need for comprehensive top-level design, technological innovation, and the establishment of standards systems. These measures aim to ensure the long-term safety and reliability of the transport infrastructure concrete structures.

关键词

交通基础设施 / 混凝土结构 / 耐久性 / 健康监测 / 预防性维修

Keywords

transport infrastructure / concrete structures / durability / health monitoring / preventive maintenance

引用本文

导出引用
李化建, 马成贤, 杨志强. 综合交通基础设施混凝土结构耐久性提升研究. 中国工程科学. 2025, 27(1): 226-235 https://doi.org/10.15302/J-SSCAE-2024.11.002

参考文献

[1]
卢春房, 卢炜‍‍. 综合立体交通运输体系发展策略 [J]‍. 铁道学报, 2022, 44(1): 1‒7‍.
Lu C F, Lu W‍. Development strategies of comprehensive stereoscopic transportation system [J]‍. Journal of the China Railway Society, 2022, 44(1): 1‒7‍.
[2]
中华人民共和国交通运输部‍. 2023年交通运输行业发展统计公报 [R]‍. 北京: 中华人民共和国交通运输部, 2024‍.
Ministry of Transport of the People's Republic of China‍. Statistics report on transportation industry development in 2023 [R]‍. Beijing: Ministry of Transport of the the People's Republic of China, 2024‍.
[3]
吴智深, 刘加平, 邹德辉, 等‍. 海洋桥梁工程轻质、高强、耐久性结构材料现状及发展趋势研究 [J]‍. 中国工程科学, 2019, 21(3): 31‒40‍.
Wu Z S, Liu J P, Zou D H, et al‍. Status quo and development trend of light-weight, high-strength, and durable structural materials applied in marine bridge engineering [J]‍. Strategic Study of CAE, 2019, 21(3): 31‒40‍.
[4]
高宗余, 阮怀圣, 秦顺全, 等‍. 我国海洋桥梁工程技术发展现状、挑战及对策研究 [J]‍. 中国工程科学, 2019, 21(3): 1‒4‍.
Gao Z Y, Ruan H S, Qin S Q, et al‍. Technical status, challenges, and solutions of marine bridge engineering [J]‍. Strategic Study of CAE, 2019, 21(3): 1‒4‍.
[5]
《中国公路学报》编辑部‍. 中国路面工程学术研究综述·2020 [J]‍. 中国公路学报, 2020, 33(10): 1‒66‍.
Editorial Department of China Journal of Highway and Transport‍. Review on China's pavement engineering research ‍·‍ ‍2020 [J]‍. China Journal of Highway and Transport, 2020, 33(10): 1‒66‍.
[6]
陶慕轩, 聂建国, 樊健生, 等‍. 中国土木结构工程科技2035发展趋势与路径研究 [J]‍. 中国工程科学, 2017, 19(1): 73‒79‍.
Tao M X, Nie J G, Fan J S, et al‍. Development trends and path for China's civil and structural engineering science and technology to 2035 [J]‍. Strategic Study of CAE, 2017, 19(1): 73‒79‍.
[7]
何洪文, 孙逢春, 李梦林‍. 我国综合交通工程科技现状及未来发展 [J]‍. 中国工程科学, 2023, 25(6): 202‒211‍.
He H W, Sun F C, Li M L‍. Current status and future development of integrated transportation technology in China [J]‍. Strategic Study of CAE, 2023, 25(6): 202‒211‍.
[8]
李盛, 张海涛, 孙煜, 等‍. 在役水泥路面劣化行为与延寿技术综述 [J]‍. 交通运输工程学报, 2024, 24(3): 25‒47‍.
Li S, Zhang H T, Sun Y, et al‍. Review on deterioration behavior and life extension technologies of cement pavement in service [J]‍. Journal of Traffic and Transportation Engineering, 2024, 24(3): 25‒47‍.
[9]
郭寅川, 申爱琴, 王胜难, 等‍. 季冻区路面混凝土界面区劣化行为及与强度相关性 [J]‍. 中国公路学报, 2019, 32(8): 49‒57‍.
Guo Y C, Shen A Q, Wang S N, et al‍. Deterioration behavior of interfacial transition zone and its correlation with strength of a concrete pavement in seasonal frost region [J]‍. China Journal of Highway and Transport, 2019, 32(8): 49‒57‍.
[10]
张志强, 李永珑, 王海彦, 等‍. 钢筋锈蚀劣化对隧道衬砌结构性能的影响 [J]‍. 中国公路学报, 2014, 27(8): 73‒81‍.
Zhang Z Q, Li Y L, Wang H Y, et al‍. Effect of steel-bar corrosion on properties of tunnel lining structure [J]‍. China Journal of Highway and Transport, 2014, 27(8): 73‒81‍.
[11]
杜彦良, 孙宝臣, 吴智深, 等‍. 关于建立健全交通基础设施长寿命安全保障体系的战略思考 [J]‍. 中国工程科学, 2017, 19(6): 1‒5‍.
Du Y L, Sun B C, Wu Z S, et al‍. Strategies for establishing and perfecting long-life security strategy of transportation infrastructure [J]‍. Strategic Study of CAE, 2017, 19(6): 1‒5‍.
[12]
李亚东, 王崇交‍. 中外桥梁长寿命化研究进展及其思考 [J]‍. 桥梁建设, 2019, 49(2): 17‒23‍.
Li Y D, Wang C J‍. Research advances in long-life of worldwide bridges and corresponding reflections [J]‍. Bridge Construction, 2019, 49(2): 17‒23‍.
[13]
赵国堂, 高亮, 赵磊, 等‍. CRTSⅡ型板式无砟轨道板下离缝动力影响分析及运营评估 [J]‍. 铁道学报, 2017, 39(1): 1‒10‍.
Zhao G T, Gao L, Zhao L, et al‍. Analysis of dynamic effect of gap under CRTSⅡ track slab and operation evaluation [J]‍. Journal of the China Railway Society, 2017, 39(1): 1‒10‍.
[14]
渠亚男, 仲新华, 王家赫, 等‍. 我国铁路混凝土结构耐久性发展现状与展望 [J]‍. 混凝土与水泥制品, 2022 (2): 8‒12, 17‍.
Qu Y N, Zhong X H, Wang J H, et al‍. Development situation and expectation on the durability of railway concrete structures in China [J]‍. China Concrete and Cement Products, 2022 (2): 8‒12, 17‍.
[15]
谢永江, 仲新华, 朱长华, 等‍. 青藏铁路桥隧结构用高性能混凝土的耐久性研究 [J]‍. 中国铁道科学, 2003, 24(1): 108‒112‍.
Xie Y J, Zhong X H, Zhu C H, et al‍. Durability of HPC for bridge and tunnel structure on Qinghai‒Xizang railway [J]‍. China Railway Science, 2003, 24(1): 108‒112‍.
[16]
杨怀志, 刘学文, 杨志强‍. 无砟轨道支承层混凝土损伤机理分析 [J]‍. 铁道建筑, 2021, 61(8): 119‒122‍.
Yang H Z, Liu X W, Yang Z Q‍. Analysis of concrete damage mechanism of ballastless track bearing layer [J]‍. Railway Engineering, 2021, 61(8): 119‒122‍.
[17]
Xu T Y, Zhou Z J, Wang M M, et al‍. Damage mechanism of pier concrete subjected to combined compressive stress, freeze-thaw, and salt attacks in saline soil [J]‍. Construction and Building Materials, 2022, 324: 126567‍.
[18]
石刚强, 陈永辉‍. 青藏铁路桥梁水中墩表层剥蚀调查分析 [J]‍. 铁道建筑技术, 2006 (S1): 83‒85, 88‍.
Shi G Q, Chen Y H‍. Investigation and analysis on surface erosion of pier in water of Qinghai‒Xizang railway bridge [J]‍. Railway Construction Technology, 2006 (S1): 83‒85, 88‍.
[19]
段炼, 李永恒, 伍江航, 等‍. HTG隧道衬砌病害调查及成因机理分析 [J]‍. 现代隧道技术, 2022, 59(S1): 727‒734‍.
Duan L, Li Y H, Wu J H, et al‍. Investigation on lining diseases of HTG tunnel and analysis of their causes and mechanisms [J]‍. Modern Tunnelling Technology, 2022, 59(S1): 727‒734‍.
[20]
张云清, 余红发, 孙伟, 等‍. 城市混凝土桥梁盐冻病害调查与研究 [J]‍. 建筑材料学报, 2012, 15(5): 665‒669, 689‍.
Zhang Y Q, Yu H F, Sun W, et al‍. Investigation and study of durability of bridge under salt scaling [J]‍. Journal of Building Materials, 2012, 15(5): 665‒669, 689‍.
[21]
翁其能, 张丽珺, 秦伟‍. 公路隧道环境因子对混凝土衬砌耐久性影响综述 [J]‍. 材料导报, 2014, 28(15): 93‒97‍.
Weng Q N, Zhang L J, Qin W‍. Effect of highway tunnel environment factors on durability of lining concrete [J]‍. Materials Review, 2014, 28(15): 93‒97‍.
[22]
Jing C, Zhang J X, Song B‍. An innovative evaluation method for performance of in-service asphalt pavement with semi-rigid base [J]‍. Construction and Building Materials, 2020, 235: 117376‍.
[23]
沈坚, 何晓宇, 侯保荣, 等‍. 交通基础设施腐蚀的现状 [J]‍. 水运工程, 2022 (9): 15‒21, 79‍.
Shen J, He X Y, Hou B R, et al‍. Current situation of corrosion of transportation infrastructure [J]‍. Port & Waterway Engineering, 2022 (9): 15‒21, 79‍.
[24]
冯忠居, 霍建维, 胡海波, 等‍. 高寒盐沼泽区干湿 ‒ 冻融循环下桥梁桩基腐蚀损伤与承载特性 [J]‍. 交通运输工程学报, 2020, 20(6): 135‒147‍.
Feng Z J, Huo J W, Hu H B, et al‍. Corrosion damage and bearing characteristics of bridge pile foundations under dry-wet-freeze-thaw cycles in alpine salt marsh areas [J]‍. Journal of Traffic and Transportation Engineering, 2020, 20(6): 135‒147‍.
[25]
秦峰‍. 公路隧道养护与检测 [R]‍. 杭州: 第二届全国桥梁、隧道养护与管理技术研讨会, 2015‍.
Qin F‍. Maintenance and inspection of highway tunnels [R]‍. Hangzhou: The 2nd National Symposium on Bridge and Tunnel Maintenance and Management Technology, 2015‍.
[26]
钱劲松, 潘祥伟, 岑业波, 等‍. 跑道不平整激励下飞机滑跑动载分析 [J]‍. 振动与冲击, 2022, 41(20): 176‒184, 269‍.
Qian J S, Pan X W, Cen Y B, et al‍. Aircraft taxiing dynamic load induced by runway roughness [J]‍. Journal of Vibration and Shock, 2022, 41(20): 176‒184, 269‍.
[27]
赵鸿铎, 姜昌山‍. 道面设施寿命增强与性能提升技术 [R]‍. 上海: 同济大学, 2021.
Zhao H D, Jiang C S‍. Technology for life extension and performance improvement of pavement facilities [R]‍. Shanghai: Tongji University, 2021‍.
[28]
凌建明, 刘诗福, 黄崇伟, 等‍. 机场水泥混凝土道面状况指数两层次分区方法及适应性 [J]‍. 同济大学学报(自然科学版), 2019, 47(8): 1143‒1147‍.
Ling J M, Liu S F, Huang C W, et al‍. Analysis of a double-level partitioning method for determining pavement condition index of airport concrete pavement [J]‍. Journal of Tongji University (Natural Science), 2019, 47(8): 1143‒1147‍.
[29]
马好霞, 余红发, 吴雅玲, 等‍. 机场道面抗冻性与冻融介质的相关性 [J]‍. 哈尔滨工程大学学报, 2017, 38(10): 1642‒1649‍.
Ma H X, Yu H F, Wu Y L, et al‍. Correlation analysis on the frost resistance of airfield pavement and freeze-thaw medium [J]‍. Journal of Harbin Engineering University, 2017, 38(10): 1642‒1649‍.
[30]
王彭生, 曾俊杰, 范志宏, 等‍. 海工结构混凝土耐久性设计中英标准对比及工程应用 [J]‍. 腐蚀科学与防护技术, 2019, 31(6): 703‒709‍.
Wang P S, Zeng J J, Fan Z H, et al‍. Comparison of durability design for marine concrete structure between Chinese and British standards and their applications for engineering [J]‍. Corrosion Science and Protection Technology, 2019, 31(6): 703‒709‍.
[31]
王胜年‍. 我国海港工程混凝土耐久性技术发展及现状 [J]‍. 水运工程, 2010 (10): 1‒7, 118‍.
Wang S N‍. Development and current situation for durability technology of marine concrete in China [J]‍. Port & Waterway Engineering, 2010 (10): 1‒7, 118‍.
[32]
霍中艳, 陈旭东‍. 港口码头健康检测与评估技术研究现状及主要问题 [J]‍. 船舶力学, 2017, 21(S1): 665‒669‍.
Huo Z Y, Chen X D‍. Overviewof current situation and main problemsof health inspection and assessment technology for ports [J]‍. Journal of Ship Mechanics, 2017, 21(S1): 665‒669‍.
[33]
黄明冬, 贾鹤鸣‍. 高性能混凝土在深圳盐田港三期工程中的应用 [J]‍. 中国港湾建设, 2004, 24(3): 31‒33, 54‍.
Huang M D, Jia H M‍. Use of high performance concrete in phase Ⅲ works at Yantian Port in Shenzhen [J]‍. China Harbour Engineering, 2004, 24(3): 31‒33, 54‍.
[34]
杨林德, 高占学‍. 公路隧道混凝土衬砌结构的耐久性与保护层厚度 [J]‍. 土木工程学报, 2003, 36(12): 64‒67‍.
Yang L D, Gao Z X‍. The durability for concrete lining structure of highway-tunnel and the thickness of concrete cover [J]‍. China Civil Engineering Journal, 2003, 36(12): 64‒67‍.
[35]
冯冀蒙, 田明阳‍. 隧道结构耐久性环境分类及等级划分研究 [J]‍. 现代隧道技术, 2014, 51(3): 85‒90‍.
Feng J M, Tian M Y‍. A study on the classification and grading of environmental effects on tunnel structure durability [J]‍. Modern Tunnelling Technology, 2014, 51(3): 85‒90‍.
[36]
周建庭, 郑丹‍. 保障我国桥梁安全的战略思考 [J]‍. 中国工程科学, 2017, 19(6): 27‒37‍.
Zhou J T, Zheng D‍. Safety of highway bridges in China [J]‍. Strategic Study of CAE, 2017, 19(6): 27‒37‍.
[37]
陈七林‍. 基于耐久性的隧道结构设计的几个问题 [J]‍. 现代隧道技术, 2011, 48(4): 105‒109, 121‍.
Chen Q L‍. On the problems of durability design of tunnel structures [J]‍. Modern Tunnelling Technology, 2011, 48(4): 105‒109, 121‍.
[38]
熊文, 覃忠余, 郭建, 等‍. 南京长江大桥铁路层车致振动对公路层维修改造的影响分析 [J]‍. 中国公路学报, 2021, 34(7): 246‒257‍.
Xiong W, Qin Z Y, Guo J, et al‍. Influence on highway bridge deck system reconstruction by train-passing-railway induced vibration of the Nanjing Yangtze River bridge [J]‍. China Journal of Highway and Transport, 2021, 34(7): 246‒257‍.
[39]
贺胜中‍. 基于全寿命理念的虹桥国际机场东跑道大修工程建设与管理 [J]‍. 建筑经济, 2012, 33(3): 35‒37‍.
He S Z‍. Construction and management of Hongqiao international airport east runway overhaul project based on the life philosophy [J]‍. Construction Economy, 2012, 33(3): 35‒37‍.
[40]
刘战鳌, 周明凯, 李北星‍. 石粉对机制砂混凝土性能影响的研究进展 [J]‍. 材料导报, 2014, 28(19): 100‒103‍.
Liu Z A, Zhou M K, Li B X‍. Research progress on influence of microfines on manufactured sand concrete's performance [J]‍. Materials Review, 2014, 28(19): 100‒103‍.
[41]
苏怀智, 杨立夫‍. 混凝土碱 ‒ 硅酸反应破坏机理及其进程影响研究进展 [J]‍. 水利学报, 2022, 53(11): 1383‒1396‍.
Su H Z, Yang L F‍. Review on damage mechanism and influence factors of Alkali-Silica reaction [J]‍. Journal of Hydraulic Engineering, 2022, 53(11): 1383‒1396‍.
[42]
王选仓, 侯荣国‍. 长寿命路面结构设计 [J]‍. 交通运输工程学报, 2007, 7(6): 46‒49‍.
Wang X C, Hou R G‍. Structure design of long-life pavement [J]‍. Journal of Traffic and Transportation Engineering, 2007, 7(6): 46‒49‍.
[43]
郑健龙, 吕松涛, 刘超超‍. 长寿命路面的技术体系及关键科学问题与技术前沿 [J]‍. 科学通报, 2020, 65(30): 3219‒3227‍.
Zheng J L, Lyu S T, Liu C C‍. Technical system, key scientific problems and technical frontier of long-life pavement [J]‍. Chinese Science Bulletin, 2020, 65(30): 3219‒3227‍.
[44]
王海彦, 仇文革, 冯冀蒙‍. 提高侵蚀环境下山岭隧道衬砌混凝土耐久性施工对策研究 [J]‍. 现代隧道技术, 2011, 48(6): 17‒22‍.
Wang H Y, Qiu W G, Feng J M‍. Research on the construction solutions to increase the lining concrete durability of mountains tunnel under aggressive environments [J]‍. Modern Tunnelling Technology, 2011, 48(6): 17‒22‍.
[45]
邵珠山, 席慧慧, 乔汝佳, 等‍. 运营隧道衬砌裂损与治理修复措施研究综述 [J]‍. 现代隧道技术, 2022, 59(4): 29‒39‍.
Shao Z S, Xi H H, Qiao R J, et al‍. Review of the research on lining damage and repair measures for tunnels in operation [J]‍. Modern Tunnelling Technology, 2022, 59(4): 29‒39‍.
[46]
傅金阳, 徐光阳, 杨曾, 等‍. 高地温隧道衬砌混凝土早期开裂机理及防控措施 [J]‍. 铁道学报, 2022, 44(3): 105‒114‍.
Fu J Y, Xu G Y, Yang Z, et al‍. Early cracking mechanism and prevention measures for lining concrete in high geotemperature tunnel [J]‍. Journal of the China Railway Society, 2022, 44(3): 105‒114‍.
[47]
周建庭, 蓝章礼, 梁宗保‍. 大型桥梁安全监测评估新技术探索与实践 [J]‍. 重庆交通大学学报(自然科学版), 2016, 35(S1): 61‒71‍.
Zhou J T, Lan Z L, Liang Z B‍. Exploration and practice of new technology for safety monitoring and evaluation of large bridges [J]‍. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(S1): 61‒71‍.
[48]
张金喜, 孔祥杰, 韩丁丁, 等‍. 不同养护模式下的高速公路沥青路面状况指数预测模型 [J]‍. 北京工业大学学报, 2016, 42(1): 74‒80‍.
Zhang J X, Kong X J, Han D D, et al‍. Prediction model of asphalt pavement PCI of expressway under different maintenance conditions [J]‍. Journal of Beijing University of Technology, 2016, 42(1): 74‒80‍.
[49]
孙晓燕, 王海龙‍. 超载运营下服役钢筋混凝土桥梁疲劳损伤研究 [J]‍. 应用基础与工程科学学报, 2008, 16(5): 733‒740‍.
Sun X Y, Wang H L‍. Fatigue damage analysis on existing reinforced concrete bridge under overloading [J]‍. Journal of Basic Science and Engineering, 2008, 16(5): 733‒740‍.
[50]
游励晖‍. 市政工程桥梁设计要点研究 [J]‍. 铁道工程学报, 2013, 30(3): 45‒49‍.
You L H‍. Research on key points of urban bridge design [J]‍. Journal of Railway Engineering Society, 2013, 30(3): 45‒49‍.
[51]
钱永久, 杜彦良‍. 交通土建结构长寿命安全保障的途径分析 [J]‍. 中国工程科学, 2017, 19(6): 6‒11‍.
Qian Y J, Du Y L‍. Analysis on ways of guaranteeing the safety of civil structures in traffic systems during long service lives [J]‍. Strategic Study of CAE, 2017, 19(6): 6‒11‍.
[52]
Taheri S‍. A review on five key sensors for monitoring of concrete structures [J]‍. Construction and Building Materials, 2019, 204: 492‒509‍.
[53]
El Khoury K, Ridley I, Vollum R, et al‍. Experimental assessment of crack prediction methods in international design codes for edge restrained walls [J]‍. Structures, 2023, 55: 1447‒1459‍.
[54]
Li Z W, Liu X Z, Lu H Y, et al‍. Surface crack detection in precasted slab track in high-speed rail via infrared thermography [J]‍. Materials, 2020, 13(21): 4837‍.
[55]
Clauß F, Ahrens M A, Mark P‍. A comparative evaluation of strain measurement techniques in reinforced concrete structures—A discussion of assembly, application, and accuracy [J]‍. Structural Concrete, 2021, 22(5): 2992‒3007‍.
[56]
孙永福‍. 青藏铁路桥梁墩台混凝土开裂成因及裂缝维修技术 [R]‍. 北京: 中国铁道科学研究院, 2011‍.
Sun Y F‍. Causes of concrete cracking and repair techniques in bridge piers and abutments of Qinghai‒‍Xizang railway [R]‍. Beijing: Chinese Academic of Railway Science, 2011‍.
[57]
雷冬, 杜文康, 朱国靖, 等‍. 基于机器视觉方法的高铁桥梁监测技术研究 [J]‍. 铁道工程学报, 2023, 40(3): 45‒49‍.
Lei D, Du W K, Zhu G J, et al‍. Research on the monitoring technology of high-speed railway bridge based on machine vision method [J]‍. Journal of Railway Engineering Society, 2023, 40(3): 45‒49‍.
[58]
Potenza F, Castelli G, Gattulli V, et al‍. Integrated process of images and acceleration measurements for damage detection [J]‍. Procedia Engineering, 2017, 199: 1894‒1899‍.
[59]
Pakrashi V, Basu B, O' Connor A‍. Structural damage detection and calibration using a wavelet‒kurtosis technique [J]‍. Engineering Structures, 2007, 29(9): 2097‒2108‍.
[60]
杨怀志, 赵国堂, 易忠来, 等‍. 京沪高铁无砟轨道服役状态智能感知与安全运维关键技术 [R]‍. 北京: 京沪高速铁路股份有限公司, 2024‍.
Yang H Z, Zhao G T, Yi Z L, et al‍. Intelligent identification and security operation key technologies for Beijing‍‒‍Shanghai high-speed railway ballastless track [R]‍. Beijing: Beijing‒‍Shanghai High Speed Railway Co‍., Ltd‍., 2024‍.
[61]
王鹏, 徐时贤, 李国红, 等‍. 跨海大桥混凝土服役挑战及检测方法综述 [J]‍. 材料导报, 2023, 37(Z1): 204‒211‍.
Wang P, Xu S X, Li G H, et al‍. Service challenges and detection methods of sea-crossing bridge concrete [J]‍. Materials Report, 2023, 37(Z1): 204‒211‍.
[62]
程浩东, 李怡静, 李玥康, 等‍. 基于改进U^(2)-Net模型的混凝土结构表面裂缝检测 [J]‍. 水利水电技术(中英文), 2024, 55(6): 159‒171‍.
Cheng H D, Li Y J, Li Y K, et al‍. Surface crack detection of concrete structure based on improved U^(2)-net model [J]‍. Water Resources and Hydropower Engineering, 2024, 55(6): 159‒171‍.
[63]
Tan Y, Zhang L M‍. Computational methodologies for optimal sensor placement in structural health monitoring: A review [J]‍. Structural Health Monitoring, 2020, 19(4): 1287‒1308‍.
[64]
Vandevoorde D, Cnudde V, Dewanckele J, et al‍. Validation of in situ applicable measuring techniques for analysis of the water adsorption by stone [J]‍. Procedia Chemistry, 2013, 8: 317‒327‍.
[65]
韩建国, 李克非‍. 混凝土抗氯离子渗透能力测试方法的适用性 [J]‍. 建筑材料学报, 2015, 18(4): 704‒709, 715‍.
Han J G, Li K F‍. Adaptability of the evaluation methods of concrete anti-chloride penetration ability [J]‍. Journal of Building Materials, 2015, 18(4): 704‒709, 715‍.
[66]
Zheng Y X, Wang S Q, Zhang P, et al‍. Application of nondestructive testing technology in quality evaluation of plain concrete and RC structures in bridge engineering: A review [J]‍. Buildings, 2022, 12(6): 843‍.
[67]
Dumoulin C, Karaiskos G, Sener J Y, et al‍. Online monitoring of cracking in concrete structures using embedded piezoelectric transducers [J]‍. Smart Materials and Structures, 2014, 23(11): 115016‍.
[68]
丁思齐, 韩宝国, 欧进萍‍. 本征自感知混凝土及其智能结构 [J]‍. 工程力学, 2022, 39(3): 1‒10‍.
Ding S Q, Han B G, Ou J P‍. Intrinsic self-sensing concrete for smart structures [J]‍. Engineering Mechanics, 2022, 39(3): 1‒10‍.
[69]
王彦明, 徐宗顺, 刘克, 等‍. 半电池电位法评估海港混凝土钢筋腐蚀状态的可靠性研究 [J]‍. 中国港湾建设, 2017, 37(12): 15‒18‍.
Wang Y M, Xu Z S, Liu K, et al‍. Reliability research of evaluating the reinforcement corrosion state in harbor concrete structures by half cell potential method [J]‍. China Harbour Engineering, 2017, 37(12): 15‒18‍.
[70]
施锦杰, 孙伟‍. 电迁移加速氯盐传输作用下混凝土中钢筋锈蚀 [J]‍. 东南大学学报(自然科学版), 2011, 41(5): 1042‒1047‍.
Shi J J, Sun W‍. Investigation of steel corrosion induced by accelerated chloride migration in concrete [J]‍. Journal of Southeast University (Natural Science Edition), 2011, 41(5): 1042‒1047‍.
[71]
熊传胜, 蒋林华, 王维春, 等‍. 混凝土中钢筋腐蚀实时监测研究现状及展望 [J]‍. 材料导报, 2012, 26(11): 101‒104‍.
Xiong C S, Jiang L H, Wang W C, et al‍. Present situation and forecast of researches in on-time monitoring of durability of concrete [J]‍. Materials Review, 2012, 26(11): 101‒104‍.
[72]
Xiao S Q, Xiao J C, Ren Q Y, et al‍. Damage evolution and fracture characteristics of heterogeneous concrete with coarse aggregate impacted by high-velocity water jet [J]‍. Construction and Building Materials, 2024, 416: 135128‍.
[73]
易忠来, 李化建, 谢永江‍. 高速铁路无砟轨道结构部件快速更换技术 [J]‍. 铁路技术创新, 2015 (2): 57‒61‍.
Yi Z L, Li H J, Xie Y J‍. Rapid replacement technology of structural components of ballastless track of high-speed railway [J]‍. Railway Technical Innovation, 2015 (2): 57‒61‍.
[74]
张军, 金伟良, 毛江鸿, 等‍. 混凝土梁电化学修复后的耐久性能及力学特征 [J]‍. 哈尔滨工业大学学报, 2020, 52(8): 72‒80‍.
Zhang J, Jin W L, Mao J H, et al‍. Durability enhancement and mechanical properties of concrete beams after electrochemical rehabilitation [J]‍. Journal of Harbin Institute of Technology, 2020, 52(8): 72‒80‍.
[75]
Li D Y, Sun Y P, Du K Q, et al‍. Effect of duty cycle and frequency of pulse current on bidirectional electro-migration rehabilitation [J]‍. Construction and Building Materials, 2024, 426: 136185‍.
[76]
朱兴一, 鲁乘鸿, 戴子薇, 等‍. 土木工程材料自愈合行为的若干力学问题与研究进展 [J]‍. 科学通报, 2021, 66(22): 2802‒2819‍.
Zhu X Y, Lu C H, Dai Z W, et al‍. Application of self-healing engineering materials: Mechanical problems and research progress [J]‍. Chinese Science Bulletin, 2021, 66(22): 2802‒2819‍.
[77]
Wong P Y, Mal J, Sandak A, et al‍. Advances in microbial self-healing concrete: A critical review of mechanisms, developments, and future directions [J]‍. Science of the Total Environment, 2024, 947: 174553‍.
[78]
张学军, 唐思熠, 肇恒跃, 等‍. 3D打印技术研究现状和关键技术 [J]‍. 材料工程, 2016, 44(2): 122‒128‍.
Zhang X J, Tang S Y, Zhao H Y, et al‍. Research status and key technologies of 3D printing [J]‍. Journal of Materials Engineering, 2016, 44(2): 122‒128‍.
[79]
Mortazavian E, Wang Z Y, Teng H L‍. Thermal-mechanical study of 3D printing technology for rail repair [R]‍. Pittsburgh: Volume 2: Advanced Manufacturing, 2018‍.
[80]
Zaid O, El Ouni M H‍. Advancements in 3D printing of cementitious materials: A review of mineral additives, properties, and systematic developments [J]‍. Construction and Building Materials, 2024, 427: 136254‍.
基金
中国工程院咨询项目“综合交通运输体系效率提升战略”(2022-PP-06)
PDF(893 KB)

Accesses

Citation

Detail

段落导航
相关文章

/