
煤炭与共伴生矿产资源一体化绿色开发战略研究
Research on the Integrated Green Development Strategy of Coal and Co-existed and Associated Resources
煤炭是我国能源安全的压舱石,与煤炭共伴生的矿产资源种类多、分布广泛、储量丰富、利用价值高,推进煤炭与共伴生矿产资源一体化绿色开发是新时期提高矿产资源开发利用效率、加快发展方式绿色转型、保障国家能源和资源安全的必然要求。本文系统梳理了煤炭与共伴生矿产资源的组合类型及分布特征,分析了煤炭与共伴生矿产资源开发的技术成熟度,总结了包括技术一体化、开发主体一体化、管理一体化、产业链一体化在内的4种典型开发模式,评价了经济、安全、生态三方面的开发效益,总结了当前在政策、技术、经济性等方面存在的关键问题。在此基础上,描绘了我国煤炭与共伴生矿产资源一体化绿色开发的发展蓝图,提出了“三步走”的发展目标,建立了涵盖一体化数字勘查设计技术、安全高效协同开发技术、智能绿色低碳技术的一体化绿色开发技术体系,构建了“四个推进,一个探索”的发展路径框架。研究建议,完善矿权管理制度、形成共探共采机制、加大科技创新投入、建立协同勘查开发激励机制,推进煤炭与共伴生矿产资源一体化绿色开发。
Coal is the cornerstone of China’s energy security. There are many types and wide distributions of coal associated resources, with abundant reserves and high utilization value. Promoting the integrated green development of coal and associated resources is an inevitable requirement for improving the efficiency of resource development and utilization, accelerating the green transformation of development mode, and ensuring national resource security in the new era. This article clarifies the combination types, distribution and typical resources of coal and associated resources. The technological maturity of coal and associated resource development has been analyzed. Four typical development models of coal and associated resource technology integration, development subject integration, management integration, and industrial chain integration have been analyzed. The development benefits in terms of economy, security, and ecology have been evaluated and the key problems currently existing have been summarized. On this basis, a strategic blueprint for the integrated green development of coal and associated resources in China has been depicted, the “three-step” strategic goal has been proposed, the integrated green development technology system covering integrated digital survey and design technology, safe and efficient collaborative development technology, and intelligent green low-carbon technology has been constructed, and the strategic path framework of “four advances, one exploration” has been constructed. Finally, policy recommendations have been put forward to promote the integrated green development of coal and associated resources, including improving the mining rights management system, forming a joint exploration and mining mechanism, increasing investment in scientific and technological innovation, and establishing a coordinated exploration and development incentive mechanism.
煤炭 / 共伴生资源 / 一体化开发 / 绿色开发 / 负碳充填开采技术 / 深部原位流态化开采技术
coal / co-existed and associated resources / integrated mining / green mining / carbon-negative backfill mining technology / deep in-situ fluidized mining technology
[1] |
刘峰, 郭林峰, 赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径 [J]. 煤炭学报, 2022, 47(1): 1‒15.
Liu F, Guo L F, Zhao L Z. Research on coal safety range and green low-carbon technology path under the dual-carbon background [J]. Journal of China Coal Society, 2022, 47(1): 1‒15.
|
[2] |
康红普, 王国法, 王双明, 等. 煤炭行业高质量发展研究 [J]. 中国工程科学, 2021, 23(5): 130‒138.
Kang H P, Wang G F, Wang S M, et al. High-quality development of China’s coal industry [J]. Strategic Study of CAE, 2021, 23(5): 130‒138.
|
[3] |
张继勇. 不仅要找好矿, 更要用好矿 [N]. 中国矿业报, 2024-05-31(01).
Zhang J Y. Not only do we need to find good mines, but we also need to make good use of them [N]. China Mining News, 2024-05-31(01).
|
[4] |
中华人民共和国自然资源部. 中国矿产资源报告2024 [R]. 北京: 中华人民共和国自然资源部, 2024.
Ministry of Natural Resources of the People’s Republic of China. China mineral resources 2024 [R]. Beijing: Ministry of Natural Resources of the People’s Republic of China, 2024.
|
[5] |
宁树正, 邓小利, 李聪聪, 等. 中国煤中金属元素矿产资源研究现状与展望 [J]. 煤炭学报, 2017, 42(9): 2214‒2225.
Ning S Z, Deng X L, Li C C, et al. Research status and prospect of metal element mineral resources in China [J]. Journal of China Coal Society, 2017, 42(9): 2214‒2225.
|
[6] |
宁树正, 黄少青, 张莉, 等. 中国北方不同成煤时代煤中金属矿点(床)分布及资源前景 [J]. 煤田地质与勘探, 2020, 48(2): 42‒48.
Ning S Z, Huang S Q, Zhang L, et al. Distribution and resource prospect of metal ore spots (deposits) in coal of different coal-forming ages in northern China [J]. Coal Geology & Exploration, 2020, 48(2): 42‒48.
|
[7] |
Seredin V V, Finkelman R B. Metalliferous coals: A review of the main genetic and geochemical types [J]. International Journal of Coal Geology, 2008, 76(4): 253‒289.
|
[8] |
代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布 [J]. 科学通报, 2020, 65(33): 3715‒3729.
Dai S F, Zhao L, Wei Q, et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution [J]. Chinese Science Bulletin, 2020, 65(33): 3715‒3729.
|
[9] |
Dai S F, Finkelman R B. Coal as a promising source of critical elements: Progress and future prospects [J]. International Journal of Coal Geology, 2018, 186: 155‒164.
|
[10] |
孙莉, 肖克炎, 娄德波. 中国铝土矿资源潜力预测评价 [J]. 地学前缘, 2018, 25(3): 82‒94.
Sun L, Xiao K Y, Lou D B. Mineral prospectivity of bauxite resources in China [J]. Earth Science Frontiers, 2018, 25(3): 82‒94.
|
[11] |
Chen J, Chen P, Yao D X, et al. Abundance, distribution, and modes of occurrence of uranium in Chinese coals [J]. Minerals, 2017, 7(12): 239.
|
[12] |
赵汀, 王登红, 刘超, 等. 中国锗矿成矿规律与开发利用现状 [J]. 地质学报, 2019, 93(6): 1245‒1251.
Zhao T, Wang D H, Liu C, et al. Metallogenic and utilization status of Ge deposit in China [J]. Acta Geologica Sinica, 2019, 93(6): 1245‒1251.
|
[13] |
代世峰, 刘池洋, 赵蕾, 等. 煤系中战略性金属矿产资源: 意义和挑战 [J]. 煤炭学报, 2022, 47(5): 1743‒1749.
Dai S F, Liu C Y, Zhao L, et al. Strategic metal resources in coal-bearing strata: Significance and challenges [J]. Journal of China Coal Society, 2022, 47(5): 1743‒1749.
|
[14] |
中国矿业大学. 准格尔超大型缘矿床镓的分布规律、赋存状态与提取技术研究报告 [R]. 北京: 中国矿业大学, 2008.
China University of Mining and Technology. Research report on the distribution law, occurrence state, and extraction technology of gallium in the Zhungeer ultra large margin deposit [R]. Beijing: China University of Mining and Technology, 2008.
|
[15] |
栾飞. 古交煤层气田压裂技术研究与应用 [J]. 石化技术, 2020, 27(8): 81‒82.
Luan F. Application and research of fracturing technology in Gujiao coalbed gas field [J]. Petrochemical Industry Technology, 2020, 27(8): 81‒82.
|
[16] |
Dai S F, Jiang Y F, Ward C R, et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the jungar coalfield [J]. International Journal of Coal Geology, 2012, 98: 10‒40.
|
[17] |
康红普, 谢和平, 任世华, 等. 全球产业链与能源供应链重构背景下我国煤炭行业发展策略研究 [J]. 中国工程科学, 2022, 24(6): 26‒37.
Kang H P, Xie H P, Ren S H, et al. Development strategy of China’s coal industry under the reconstruction of global industrial chain and energy supply chain [J]. Strategic Study of CAE, 2022, 24(6): 26‒37.
|
[18] |
谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇 [J]. 煤炭学报, 2021, 46(7): 2197‒2211.
Xie H P, Ren S H, Xie Y C, et al. Development opportunities of the coal industry towards the goal of carbon neutrality [J]. Journal of China Coal Society, 2021, 46(7): 2197‒2211.
|
[19] |
康红普, 任世华, 王保强, 等. 煤炭工业数字化发展战略研究 [J]. 中国工程科学, 2023, 25(6): 170‒178.
Kang H P, Ren S H, Wang B Q, et al. Digital development strategy of coal industry [J]. Strategic Study of CAE, 2023, 25(6): 170‒178.
|
[20] |
秦勇. 中国煤系矿产近现代地质研究进展与走向 [J/OL].煤田地质与勘探, 1‒24[2024-12-10]. http://kns.cnki.net/kcms/detail/61.1155.P.20241104.1645.002.html.
Qin Y. Modern and contemporary geological research progress and trends of minerals in coal measures of China [J/OL]. Coal Geology & Exploration, 1‒24[2024-12-10]. http://kns.cnki.net/kcms/detail/61.1155.P.20241104.1645.002.html.
|
[21] |
吴占伟, 黄炳香, 赵兴龙, 等. 我国煤系共伴生矿产赋存特征及分布规律 [J]. 采矿与安全工程学报, 2024, 41(1): 29‒46.
Wu Z W, Huang B X, Zhao X L, et al. Occurrence characteristics and distribution of paragenetic commercial minerals and associated minerals in coal-bearing strata in China [J]. Journal of Mining & Safety Engineering, 2024, 41(1): 29‒46.
|
[22] |
赵蕾, 王西勃, 代世峰. 煤系中的锂矿产: 赋存分布、成矿与资源潜力 [J]. 煤炭学报, 2022, 47(5): 1750‒1760.
Zhao L, Wang X B, Dai S F. Lithium resources in coal-bearing strata: Occurrence, mineralization, and resource potential [J]. Journal of China Coal Society, 2022, 47(5): 1750‒1760.
|
[23] |
宁树正, 黄少青, 朱士飞, 等. 中国煤中金属元素成矿区带 [J]. 科学通报, 2019, 64(24): 2501‒2513.
Ning S Z, Huang S Q, Zhu S F, et al. Mineralization zoning of coal-metal deposits in China [J]. Chinese Science Bulletin, 2019, 64(24): 2501‒2513.
|
[24] |
魏迎春, 李新, 曹代勇, 等. 煤与煤系战略性金属矿产协同勘查技术方法 [J]. 煤炭科学技术, 2023, 51(12): 27‒41.
Wei Y C, Li X, Cao D Y, et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata [J]. Coal Science and Technology, 2023, 51(12): 27‒41.
|
[25] |
曹代勇, 魏迎春, 李新, 等. 煤与煤系战略性金属矿产协同勘查理论与技术体系框架探讨 [J]. 煤炭学报, 2024, 49(1): 479‒494.
Cao D Y, Wei Y C, Li X, et al. Discussion on the theory and technical system framework of cooperative exploration of coal and strategic metal resources in coal-bearing strata [J]. Journal of China Coal Society, 2024, 49(1): 479‒494.
|
[26] |
黄炳香, 赵兴龙, 余斌, 等. 煤与共伴生战略性金属矿产协调开采理论与技术构想 [J]. 煤炭学报, 2022, 47(7): 2516‒2533.
Huang B X, Zhao X L, Yu B, et al. Research framework of theory and technology for coordinated mining of coal and its co-existed and associated strategic metal minerals [J]. Journal of China Coal Society, 2022, 47(7): 2516‒2533.
|
[27] |
魏迎春, 李新, 曹代勇, 等. 煤与煤系战略性金属矿产协同勘查模型 [J]. 地质学报, 2024, 98(8): 2517‒2530.
Wei Y C, Li X, Cao D Y, et al. Cooperative exploration model of coal and strategic metal resourcesin coal-bearing strata [J]. Acta Geologica Sinica, 2024, 98(8): 2517‒2530.
|
[28] |
Zhang Y, Wei Y C, Cao D Y, et al. Cooperative exploration model of coal-gallium deposit: A case study of the Heidaigou coal-gallium deposit in the jungar coalfield, Inner Mongolia, China [J]. Minerals, 2024, 14(2): 156.
|
[29] |
Li X, Wei Y C, Cao D Y, et al. Cooperative exploration model of coal-Ge deposit: A case study of the Wulantuga coal-Ge deposit in Shengli coalfield, Inner Mongolia, China [J]. Energy Exploration & Exploitation, 2024, 42(5): 1666‒1683.
|
[30] |
Li X, Wei Y C, Cao D Y, et al. Cooperative exploration model of coal-lithium deposit: A case study of the haerwusu coal-lithium deposit in the jungar coalfield, Inner Mongolia, Northern China [J]. Minerals, 2024, 14(2): 179.
|
[31] |
Wang T, Sun J, Lin Z Y, et al. Coordinated exploration model and its application to coal and coal-associated deposits in coal basins of China [J]. Acta Geologica Sinica-English Edition, 2021, 95(4): 1346‒1356.
|
[32] |
袁亮. 煤炭精准开采科学构想 [J]. 煤炭学报, 2017, 42(1): 1‒7.
Yuan L. Scientific conception of precision coal mining [J]. Journal of China Coal Society, 2017, 42(1): 1‒7.
|
[33] |
黄炳香, 赵兴龙, 韩晓克, 等. 煤系共伴生矿产协同开发 [J]. 采矿与安全工程学报, 2024, 41(1): 1‒14.
Huang B X, Zhao X L, Han X K, et al. Collaborative development of co-existed and associated minerals in the coal series [J]. Journal of Mining & Safety Engineering, 2024, 41(1): 1‒14.
|
[34] |
崔艳. 我国煤系共伴生矿产资源分布与开发现状 [J]. 洁净煤技术, 2018, 24(S1): 27‒32.
Cui Y. Distribution and exploration of associated resources occurred in Chinese coal-bearing series [J]. Clean Coal Technology, 2018, 24(S1): 27‒32.
|
[35] |
袁亮, 张通, 赵毅鑫, 等. 煤与共伴生资源精准协调开采——以鄂尔多斯盆地煤与伴生特种稀有金属精准协调开采为例 [J]. 中国矿业大学学报, 2017, 46(3): 449‒459.
Yuan L, Zhang T, Zhao Y X, et al. Precise coordinated mining of coal and associated resources: A case of environmental coordinated mining of coal and associated rare metal in Ordos basin [J]. Journal of China University of Mining & Technology, 2017, 46(3): 449‒459.
|
[36] |
黄炳香, 赵兴龙, 张权. 煤与煤系伴生资源共采的理论与技术框架 [J]. 中国矿业大学学报, 2016, 45(4): 653‒662.
Huang B X, Zhao X L, Zhang Q. Framework of the theory and technology for simultaneous mining of coal and its associated resources [J]. Journal of China University of Mining & Technology, 2016, 45(4): 653‒662.
|
[37] |
郭子一, 刘建荣, 郭志宾, 等. 我国煤系共伴生矿产资源综合利用研究进展 [J]. 矿产保护与利用, 2022, 42(6): 1‒9.
Guo Z Y, Liu J R, Guo Z B, et al. Research progress on comprehensive utilization of associated mineral resources in coal-bearing strata in China [J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 1‒9.
|
[38] |
Talan D, Huang Q Q. A review study of rare earth, cobalt, lithium, and manganese in Coal-based sources and process development for their recovery [J]. Minerals Engineering, 2022, 189: 107897.
|
[39] |
黄炳香, 赵兴龙, 韩晓克, 等. 协调开采诱导岩层反对称沉降叠加平衡调控方法: CN115263301A [P]. 2022-11-01.
Huang B X, Zhao X L, Han X K, et al. Coordinated mining induced rock strata anti symmetric subsidence superposi-tion balance control method: CN202210842442.5 [P]. 2022-07-18.
|
[40] |
张亚宁, 任世华, 郑德志, 等. 煤炭行业向地热能资源开发拓展转型的路径分析 [J]. 煤炭经济研究, 2022, 42(1): 39‒46.
Zhang Y N, Ren S H, Zheng D Z, et al. Path analysis of the transformation and expansion of the coal industry to the development and expansion of geothermal energy resources [J]. Coal Economic Research, 2022, 42(1): 39‒46.
|
[41] |
袁亮. 煤及共伴生资源精准开采科学问题与对策 [J]. 煤炭学报, 2019, 44(1): 1‒9.
Yuan L. Scientific problem and countermeasure for precision mining of coal and associated resources [J]. Journal of China Coal Society, 2019, 44(1): 1‒9.
|
[42] |
曹代勇, 秦国红, 张岩, 等. 含煤岩系矿产资源类型划分及组合关系探讨 [J]. 煤炭学报, 2016, 41(9): 2150‒2155.
Cao D Y, Qin G H, Zhang Y, et al. Classification and combination relationship of mineral resources in coal measures [J]. Journal of China Coal Society, 2016, 41(9): 2150‒2155.
|
[43] |
曹代勇, 秦国红, 魏迎春, 等. 煤系矿产资源赋存的盆地动力学控制——研究现状与展望 [J]. 中国煤炭地质, 2020, 32(9): 38‒46.
Cao D Y, Qin G H, Wei Y C, et al. Basin dynamics controlling of coal measures mineral resources hosting—Research status and expectation [J]. Coal Geology of China, 2020, 32(9): 38‒46.
|
[44] |
郑秀娟, 杜远生, 朱筱敏, 等. 中国古地理学近十年主要进展 [J]. 矿物岩石地球化学通报, 2021, 40(1): 4, 94‒114.
Zheng X J, Du Y S, Zhu X M, et al. The main progresses of Chinese Palaeogeography in the past decade [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 4, 94‒114.
|
[45] |
乔军伟, 宁树正, 宋时雨, 等. 西藏煤炭地质工作进展及前景 [J]. 煤田地质与勘探, 2019, 47(2): 36‒43.
Qiao J W, Ning S Z, Song S Y, et al. Progress and prospects of coal geological work in Xizang [J]. Coal Geology & Exploration, 2019, 47(2): 36‒43.
|
[46] |
矿区煤层开发项目组. 煤层气与煤炭协调开发理论与技术 [M]. 北京: 科学出版社, 2021.
Coalbed Methane Development Project Team in the Mining Area. Theory and technology of coordinated development of coalbed methane and coal [M]. Beijing: Science Press, 2021.
|
[47] |
顾大钊, 李井峰, 曹志国, 等. 我国煤矿矿井水保护利用发展战略与工程科技 [J]. 煤炭学报, 2021, 46(10): 3079‒3089.
Gu D Z, Li J F, Cao Z G, et al. Technology and engineering development strategy of water protection and utilization of coal mine in China [J]. Journal of China Coal Society, 2021, 46(10): 3079‒3089.
|
[48] |
宁树正, 黄少青, 严晓云, 等. 我国煤系锗镓资源前景及研究方向 [J]. 中国矿业, 2023, 32(11): 1‒11.
Ning S Z, Huang S Q, Yan X Y, et al. Prospect and research direction of germanium and gallium resources in coal-bearing strata in China [J]. China Mining Magazine, 2023, 32(11): 1‒11.
|
[49] |
吴兆剑, 韩效忠, 李紫楠, 等. 准噶尔盆地中生代“下煤上铀”地层结构的沉积机理 [J]. 煤炭科学技术, 2023, 51(12): 52‒64.
Wu Z J, Han X Z, Li Z N, et al. Sedimentary mechanism analysis of “lower coal and upper uranium” strata structure in Junggar Basin, Northern China [J]. Coal Science and Technology, 2023, 51(12): 52‒64.
|
[50] |
张磊, 陈航超, 潘金禾, 等. 煤系锂和稀土的赋存特征与富集提取研究进展 [J]. 矿产保护与利用, 2023, 43(6): 1‒13.
Zhang L, Chen H C, Pan J H, et al. Research progress on occurrence characteristics, enrichment and extraction of coal-based lithium and rare earth [J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 1‒13.
|
[51] |
王国法, 庞义辉, 任怀伟, 等. 矿山智能化建设的挑战与思考 [J]. 智能矿山, 2022, 3(10): 2‒15.
Wang G F, Pang Y H, Ren H W, et al. Challenges and thinking of mine intelligent construction [J]. Journal of Intelligent Mine, 2022, 3(10): 2‒15.
|
/
〈 |
|
〉 |