
供应链视角下我国氢能产业创新布局与对策研究
Innovation Layout and Countermeasures of China's Hydrogen Energy Industry: A Supply Chain Perspective
在碳中和背景下,氢能成为各国政府积极推动的清洁能源革命战略的核心组分,分析氢能产业的实践布局与供应链流程,对于我国氢能的产业化、商业化与创新化发展具有重要的现实价值。基于供应链研究方法,本文旨在系统解构当前国际氢能产业的阶段性布局及供应链发展趋势;通过梳理氢能产业上、中、下游的供应链发展突破点,详细剖析氢能产业供应链的布局与现状,并提出对应的优化路径和对策建议。研究表明,氢能产业供应链的发展倾向呈现出“发展→完善→拓展”的实际诉求,路径优化表现为“技术协调→基础布局→路径拓展”的客观递进。建议构建以“制 ‒ 储 ‒ 运”为核心的长江氢能走廊基础设施体系,建设涵盖“制、运、输、配”的国家氢能枢纽中心,优化我国氢能供应链体系和氢能产业创新,加强绿色氢能生产的科技创新,并积极融入全球氢能产业创新前沿。
In the context of carbon neutrality, hydrogen energy has become a cornerstone of the clean energy transition actively promoted by governments worldwide. Analyzing the industrial deployment and supply chain dynamics of the hydrogen energy sector holds substantial values for advancing its industrialization, commercialization, and innovation in China. Drawing on supply chain research methodologies, this study systematically deconstructs the phased development and evolving trends of the global hydrogen energy industry. By identifying key breakthroughs across the upstream, midstream, and downstream segments of the hydrogen supply chain, the study comprehensively analyzes the current structure and operational landscape of the hydrogen supply chain while proposing targeted optimization strategies and policy recommendations. The findings indicate that the development trajectory of the hydrogen energy supply chain follows a progressive pattern of "development→optimization→expansion," with its evolution driven by a sequential pathway of "technological integration→infrastructure development→market expansion." To accelerate China's hydrogen energy transition, this study recommends establishing a Yangtze River Hydrogen Energy Corridor infrastructure system centered on production, storage, and transportation; developing national hydrogen energy hubs that encompass production, transportation, distribution, and supply; optimizing the hydrogen supply chain and fostering industrial innovation; strengthening technological advancements in green hydrogen production; and actively participating in global hydrogen energy innovation.
carbon neutrality / supply chain approach / hydrogen energy strategy / hydrogen energy industry layout
[1] |
Pal A, Kakran S, Kumar A, et al. Powering squarely into the future: A strategic analysis of hydrogen energy in QUAD nations [J]. International Journal of Hydrogen Energy, 2024, 49: 16‒41.
|
[2] |
Madadi Avargani V, Zendehboudi S, Cata Saady N M, et al. A comprehensive review on hydrogen production and utilization in North America: Prospects and challenges [J]. Energy Conversion and Management, 2022, 269: 115927.
|
[3] |
Tian Z, Lv H, Zhou W, et al. Review on equipment configuration and operation process optimization of hydrogen refueling station [J]. International Journal of Hydrogen Energy, 2022, 47(5): 3033‒3053.
|
[4] |
Hassan Q, Abdulateef A M, Hafedh S A, et al. Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation [J]. International Journal of Hydrogen Energy, 2023, 48(46): 17383‒17408.
|
[5] |
Böhm M, Fernández Del Rey A, Pagenkopf J, et al. Review and comparison of worldwide hydrogen activities in the rail sector with special focus on on-board storage and refueling technologies [J]. International Journal of Hydrogen Energy, 2022, 47(89): 38003‒38017.
|
[6] |
Huang Y, Zhou Y, Zhong R H, et al. Hydrogen energy development in China: Potential assessment and policy implications [J]. International Journal of Hydrogen Energy, 2024, 49: 659‒669.
|
[7] |
Li Y F, Shi X P, Phoumin H. A strategic roadmap for large-scale green hydrogen demonstration and commercialisation in China: A review and survey analysis [J]. International Journal of Hydrogen Energy, 2022, 47(58): 24592‒24609.
|
[8] |
Bayrakdar Ates E, Calik E. Public awareness of hydrogen energy: A comprehensive evaluation based on statistical approach [J]. International Journal of Hydrogen Energy, 2023, 48(24): 8756‒8767.
|
[9] |
Al-Qahtani A, Parkinson B, Hellgardt K, et al. Uncovering the true cost of hydrogen production routes using life cycle monetisation [J]. Applied Energy, 2021, 281: 115958.
|
[10] |
Ma N, Zhao W H, Wang W Z, et al. Large scale of green hydrogen storage: Opportunities and challenges [J]. International Journal of Hydrogen Energy, 2024, 50: 379‒396.
|
[11] |
熊华文, 符冠云. 全球氢能发展的四种典型模式及对我国的启示 [J]. 环境保护, 2021, 49(1): 52‒55.
Xiong H W, Fu G Y. Four typical models of global hydrogen energy industries development and their references for China [J]. Environmental Protection, 2021, 49(1): 52‒55.
|
[12] |
张真, 刘倩, 史英哲, 等. 全球绿氢产业财政金融激励政策与启示 [J]. 环境保护, 2022, 50(14): 66‒70.
Zhang Z, Liu Q, Shi Y Z, et al. Progress and insights of global fiscal and financial incentives for green hydrogen industry [J]. Environmental Protection, 2022, 50(14): 66‒70.
|
[13] |
孙玉玲, 胡智慧, 秦阿宁, 等. 全球氢能产业发展战略与技术布局分析 [J]. 世界科技研究与发展, 2020, 42(4): 455‒465.
Sun Y L, Hu Z H, Qin A N, et al. Analysis of strategy and technology situation on global hydrogen industry [J]. World Sci-Tech R & D, 2020, 42(4): 455‒465.
|
[14] |
Jaramillo D E, Jaffe A, Snyder B E R, et al. Metal-organic frameworks as O2-selective adsorbents for air separations [J]. Chemical Science, 2022, 13(35): 10216‒10237.
|
[15] |
Niaz S, Manzoor T, Pandith A H. Hydrogen storage: Materials, methods and perspectives [J]. Renewable and Sustainable Energy Reviews, 2015, 50: 457‒469.
|
[16] |
Tsiklios C, Hermesmann M, Müller T E. Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations [J]. Applied Energy, 2022, 327: 120097.
|
[17] |
Li H, Cao X W, Liu Y, et al. Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges [J]. Energy Reports, 2022, 8: 6258‒6269.
|
[18] |
Abdalla A M, Hossain S, Nisfindy O B, et al. Hydrogen production, storage, transportation and key challenges with applications: A review [J]. Energy Conversion and Management, 2018, 165: 602‒627.
|
[19] |
Colbertaldo P, Agustin S B, Campanari S, et al. Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity [J]. International Journal of Hydrogen Energy, 2019, 44(19): 9558‒9576.
|
[20] |
Aminudin M A, Kamarudin S K, Lim B H, et al. An overview: Current progress on hydrogen fuel cell vehicles [J]. International Journal of Hydrogen Energy, 2023, 48(11): 4371‒4388.
|
[21] |
李谚斐, 于宏源. 构建中国新能源战略通道安全——基于大国竞合视角 [J]. 国际关系研究, 2023 (6): 60‒80, 154‒155.
Li Y F, Yu H Y. Building international strategic corridors of renewable electricity and hydrogen energy for security—In the perspective of great power competition [J]. Journal of International Relations, 2023 (6): 60‒80, 154‒155.
|
[22] |
Evro S, Oni B A, Tomomewo O S. Carbon neutrality and hydrogen energy systems [J]. International Journal of Hydrogen Energy, 2024, 78: 1449‒1467.
|
[23] |
Boretti A, Banik B K. Advances in hydrogen production from natural gas reforming [J]. Advanced Energy and Sustainability Research, 2021, 2(11): 2100097.
|
[24] |
Midilli A, Kucuk H, Topal M E, et al. A comprehensive review on hydrogen production from coal gasification: Challenges and opportunities [J]. International Journal of Hydrogen Energy, 2021, 46(50): 25385‒25412.
|
[25] |
Zheng J Y, Liu X X, Xu P, et al. Development of high pressure gaseous hydrogen storage technologies [J]. International Journal of Hydrogen Energy, 2012, 37(1): 1048‒1057.
|
[26] |
Mehboob M Y, Hussain R, Younas F, et al. Computation assisted design and prediction of alkali-metal-centered B12N12 nanoclusters for efficient H2 adsorption: New hydrogen storage materials [J]. Journal of Cluster Science, 2023, 34(3): 1237‒1247.
|
[27] |
Zhang Z G, Shang M H. Research on hydrogen leakage and diffusion mechanism in hydrogenation station [J]. Scientific Reports, 2024, 14(1): 3363.
|
[28] |
Amini A, Sedaghat M H, Jamshidi S, et al. A comprehensive CFD simulation of an industrial-scale side-fired steam methane reformer to enhance hydrogen production [J]. Chemical Engineering and Processing—Process Intensification, 2023, 184: 109269.
|
[29] |
Vezzoni R. How "clean" is the hydrogen economy?Tracing the connections between hydrogen and fossil fuels [J]. Environmental Innovation and Societal Transitions, 2024, 50: 100817.
|
[30] |
Lehne J, Yu S, Blahut N, et al. 1.5 ℃ steel: Decarbonizing the steel sector in Paris compatible pathways [EB/OL]. (2021-10-26)[2024-12-15].https://www.e3g.org/publications/1-5c-steel-decarbonising-the-steel-sector-in-paris-compatible-pathways/.
|
[31] |
黄冬玲, 刘源, 袁小帅, 等. 基于自然语言处理技术的中国氢能政策数据挖掘研究 [J]. 中国科学院院刊, 2024, 39(6): 1032‒1046.
Huang D L, Liu Y, Yuan X S, et al. Study on data mining of hydrogen energy policy in China based on natural language processing technology [J]. Bulletin of Chinese Academy of Sciences, 2024, 39(6): 1032‒1046.
|
[32] |
李慧敏, 涂淑平. 中国氢燃料电池技术发展现状、挑战及对策 [J]. 现代化工, 2023, 43(11): 5‒9.
Li H M, Tu S P. Challenges and countermeasures of key technologies for hydrogen fuel cells in China [J]. Modern Chemical Industry, 2023, 43(11): 5‒9.
|
[33] |
邵远敬, 徐蕾, 刘校平, 等. 中国钢铁生产"碳中和"解决方案探讨 [J]. 中国冶金, 2022, 32(4): 1‒8.
Shao Y J, Xu L, Liu X P, et al. Discussion on solution of "carbon neutrality" in China's steel production [J]. China Metallurgy, 2022, 32(4): 1‒8.
|
[34] |
魏凤, 任小波, 高林, 等. 碳中和目标下美国氢能战略转型及特征分析 [J]. 中国科学院院刊, 2021, 36(9): 1049‒1057.
Wei F, Ren X B, Gao L, et al. Analysis on transformation and characteristics of American hydrogen energy strategy under carbon neutralization goal [J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1049‒1057.
|
[35] |
Dawood F, Anda M, Shafiullah G M. Hydrogen production for energy: An overview [J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847‒3869.
|
[36] |
李灿. 绿色氢能在"双碳"战略中的作用 [J]. 科技导报, 2024, 42(15): 1‒2.
Li C. The role of green hydrogen energy in dual carbon strategy [J]. Science & Technology Review, 2024, 42(15): 1‒2.
|
[37] |
Miao B, Giordano L, Chan S H. Long-distance renewable hydrogen transmission via cables and pipelines [J]. International Journal of Hydrogen Energy, 2021, 46(36): 18699‒18718.
|
[38] |
孟翔宇, 顾阿伦, 曾静, 等. 中国氢能交通产业的现状、挑战与展望 [J]. 科技导报, 2024, 42(3): 6‒26.
Meng X Y, Gu A L, Zeng J, et al. Status quo, challenges, and prospects of China's hydrogen transportation industry [J]. Science & Technology Review, 2024, 42(3): 6‒26.
|
[39] |
Gordon J A, Balta-Ozkan N, Ali Nabavi S. Gauging public perceptions of blue and green hydrogen futures: Is the twin-track approach compatible with hydrogen acceptance? [J]. International Journal of Hydrogen Energy, 2024, 49: 75‒104.
|
[40] |
王明华. 国内氢能应用场景分析及发展前景预测 [J]. 石油炼制与化工, 2023, 54(9): 18‒23.
Wang M H. Application scenarios analysis and development prospect prediction of domestic hydrogen energy [J]. Petroleum Processing and Petrochemicals, 2023, 54(9): 18‒23.
|
[41] |
倪耀琪, 朱恒恺. "双碳" 目标下氢能发展机遇、难点与路径选择 [J]. 现代化工, 2024, 44(2): 1‒8.
Ni Y Q, Zhu H K. Opportunities, difficulty and path choice for hydrogen energy development under "carbon dioxide emission peaking and carbon neutrality" goal [J]. Modern Chemical Industry, 2024, 44(2): 1‒8.
|
/
〈 |
|
〉 |