
数字物理元宇宙——工业仿真软件发展思考与展望
Digital-Physics Metaverse: Thoughts and Prospects on the Development of Industrial Simulation Software
本文提出了数字物理元宇宙的理念,旨在明确和拓展工业仿真软件的核心内涵,突破工业仿真软件在通用性、易用性、算力及算法等方面的局限性,为工业仿真软件的未来发展提供理论支持与实践参考。全面把握从计算物理到工业仿真、从工业仿真软件到数字物理元宇宙的认识历程,在比较分析的基础上论述了数字物理元宇宙的基本内涵;进一步界定了数字物理元宇宙与工业仿真软件的异同关系,阐明了数字物理元宇宙的时效性、广适性、洞察性、非扰性、普及性等优势以及对教学及基础科研的积极促进作用。针对构建计算物理核心技术的领先地位、核心技术紧密联系实际应用、打破专业壁垒并促成跨学科知识交汇、改变传统工程研发的惯性并激发工程师的参与度等数字物理元宇宙的发展难点,提出了数字物理元宇宙的发展路径:成立跨学科的教学与科研中心,开发以数字物理元宇宙为框架的教学软件,建立与工业应用相结合的研发基地,设立独立的验证机构和学术交流平台。数字物理元宇宙作为工业仿真软件的高阶形态,将重构工业实验范式,为教学与基础科研提供全新的工具和体验,促进我国在新一轮国际科技竞争中抢占战略先机。
This study introduces the concept of the digital-physics metaverse, aiming to clarify and expand the core connotations of industrial simulation software, address its limitations in generality, usability, computational power, and algorithmic capabilities, and provide both theoretical support and practical guidance for its future development. By tracing the evolution from computational physics to industrial simulation, and from simulation software to the digital-physics metaverse, the study offers a comparative analysis and elaborates on the fundamental attributes of this new paradigm. The study further distinguishes the digital-physics metaverse from traditional industrial simulation software, highlighting its key advantages, including timeliness, universality, insightfulness, non-invasiveness, and accessibility, as well as its potential to enhance education and fundamental research. To address the critical challenges in developing the digital-physics metaverse, such as establishing leadership in core computational physics technologies, bridging the gap between core technologies and real-world applications, breaking disciplinary silos to foster interdisciplinary knowledge integration, and transforming the inertia of traditional engineering research and development (R&D) to encourage broader participation, the study proposes a comprehensive development roadmap. This includes the establishment of interdisciplinary teaching and research centers, development of educational software based on the digital-physics metaverse framework, creation of industry-integrated R&D bases, and setup of independent verification bodies and academic exchange platforms. As an advanced form of industrial simulation software, the digital-physics metaverse is expected to reshape experimental paradigms in industry, provide novel tools and immersive experiences for education and fundamental research, and help position China at the forefront of the next wave of scientific and technological competition.
数字物理元宇宙 / 工业仿真软件 / 数值模拟 / 多物理耦合 / 虚实互动
digital-physics metaverse / industrial simulation software / numerical simulation / multi-physics coupling / virtual–physical interaction
[1] |
刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展 [J]. 金属学报, 2024, 60(5): 569‒584.
Liu Z Z, Ding M L, Xie J X. Advancements in digital manufacturing for metal 3D printing [J]. Acta Metallurgica Sinica, 2024, 60(5): 569‒584.
|
[2] |
尚建宁, 刘霓昀, 党秀, 等. 典型中药工厂生产制造系统数字化仿真研究 [J]. 化工与医药工程, 2023, 44(6): 15‒20.
Shang J N, Liu N Y, Dang X, et al. Research on digital simulation of the manufacturing system in typical traditional Chinese medicine factory [J]. Chemical and Pharmaceutical Engineering, 2023, 44(6): 15‒20.
|
[3] |
张衡, 曾军, 张剑, 等. 整机全三维仿真技术加速航空发动机研发 [J]. 航空动力, 2023 (3): 30‒33.
Zhang H, Zeng J, Zhang J, et al. Accelerating the development of aero engine by full-3D simulation technology [J]. Aerospace Power, 2023 (3): 30‒33.
|
[4] |
Amiri M M, Shadman M, Estefen S F. A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes [J]. Renewable and Sustainable Energy Reviews, 2024, 193: 114279.
|
[5] |
Jin L C, Zhai X Y, Wang K, et al. Big data, machine learning, and digital twin assisted additive manufacturing: A review [J]. Materials & Design, 2024, 244: 113086.
|
[6] |
胡雅涵, 寇贞贞, 江源, 等. 建材行业工业软件发展研究 [J]. 中国工程科学, 2022, 24(4): 177‒187.
Hu Y H, Kou Z Z, Jiang Y, et al. Development of industrial software for building materials industry [J]. Strategic Study of CAE, 2022, 24(4): 177‒187.
|
[7] |
刘文仲. 中国钢铁行业工业软件现状及思考 [J]. 中国冶金, 2023, 33(8): 1‒5.
Liu W Z. Current situation and thinking of industrial software in China's iron and steel industry [J]. China Metallurgy, 2023, 33(8): 1‒5.
|
[8] |
邵珠峰, 赵云, 王晨, 等. 新时期我国工业软件产业发展路径研究 [J]. 中国工程科学, 2022, 24(2): 86‒95.
Shao Z F, Zhao Y, Wang C, et al. Development path of China's industrial software industry in the new era [J]. Strategic Study of CAE, 2022, 24(2): 86‒95.
|
[9] |
陶卓, 黄卫东. 中国工业软件产业发展路径研究 [J]. 技术经济与管理研究, 2021 (4): 78‒82.
Tao Z, Huang W D. Research on the development path of industrial software industry in China [J]. Journal of Technical Economics & Management, 2021 (4): 78‒82.
|
[10] |
张健, 周乃春, 李明, 等. 面向航空航天领域的工业CFD软件研发设计 [J]. 软件学报, 2022, 33(5): 1529‒1550.
Zhang J, Zhou N C, Li M, et al. R & D and design of industrial CFD software for aeronautics and astronautics [J]. Journal of Software, 2022, 33(5): 1529‒1550.
|
[11] |
郭朝先, 苗雨菲, 许婷婷. 全球工业软件产业生态与中国工业软件产业竞争力评估 [J]. 西安交通大学学报(社会科学版), 2022, 42(2): 22‒30.
Guo C X, Miao Y F, Xu T T. Global industrial software ecosystem and evaluation of China's industrial software competitiveness [J]. Journal of Xi'an Jiaotong University (Social Sciences), 2022, 42(2): 22‒30.
|
[12] |
刘志迎, 闫天星, 古继宝. 工业软件关键核心技术国际竞争态势研究 [J/OL]. 科学学研究, [2025-03-15]. https://doi.org/10.16192/j.cnki.1003-2053.20240628.003.
Liu Z Y, Yan T X, Gu J B. Research on the international competition situation of key core technologies of industrial software [J/OL]. China Industrial Economics, [2025-03-15]. https://doi.org/10.16192/j.cnki.1003-2053.20240628.003.
|
[13] |
贺兴, 唐跃中, 韩烨宸, 等. 基于数字孪生与元宇宙的能源互联网认知系统论(三): 复杂系统群智调控理论及其框架 [J]. 中国电机工程学报, 2024, 44(24): 9546‒9559.
He X, Tang Y Z, Han Y C, et al. System theory study on situation awareness of energy Internet of things based on digital twins and metaverse (Ⅲ): Theory and framework for energy scheduling and management considering swarm intelligence [J]. Proceedings of the CSEE, 2024, 44(24): 9546‒9559.
|
[14] |
贺兴, 陈旻昱, 唐跃中, 等. 基于数字孪生与元宇宙技术的能源互联网态势感知系统论方法研究(一): 概念、挑战与研究框架 [J]. 中国电机工程学报, 2024, 44(2): 547‒561.
He X, Chen M Y, Tang Y Z, et al. System theory study on situation awareness of energy Internet of things based on digital twins and metaverse (Ⅰ): Concept, challenge, and framework [J]. Proceedings of the CSEE, 2024, 44(2): 547‒561.
|
[15] |
贺兴, 潘美琪, 唐跃中, 等. 基于数字孪生与元宇宙的能源互联网认知系统论(二): 面向复杂系统涌现现象的虚拟仿真推演框架 [J]. 中国电机工程学报, 2024, 44(11): 4311‒4323.
He X, Pan M Q, tang Y Z, et al. System theory on perception of energy Internet of things based on digital twins and metaverse (Ⅱ): Virtual simulation and analytical deduction framework for emergency phenomenon in complex system [J]. Proceedings of the CSEE, 2024, 44(11): 4311‒4323.
|
[16] |
谢嘉成, 郑子盈, 王学文, 等. 基于工业元宇宙的综采工作面虚实融合运行模式初步探索 [J]. 煤炭科学技术, 2023, 51(10): 266‒279.
Xie J C, Zheng Z Y, Wang X W, et al. Preliminary research on the operation mode of virtual‒real integration in fully-mechanized mining face based on industrial metaverse [J]. Coal Science and Technology, 2023, 51(10): 266‒279.
|
[17] |
Fletcher D F. The future of computational fluid dynamics (CFD) simulation in the chemical process industries [J]. Chemical Engineering Research and Design, 2022, 187: 299‒305.
|
[18] |
Chourdakis G, Schneider D, Uekermann B. OpenFOAM-preCICE: Coupling OpenFOAM with external solvers for multi-physics simulations [J]. OpenFOAM Journal, 2023, 3: 1‒25.
|
[19] |
Xie Z Z, Wang S, Shen Y S. A novel hybrid CFD-DEM method for high-fidelity multi-resolution modelling of cross-scale particulate flow [J]. Chemical Engineering Journal, 2023, 455: 140731.
|
[20] |
Chen H D, Kandasamy S, Orszag S, et al. Extended Boltzmann kinetic equation for turbulent flows [J]. Science, 2003, 301(5633): 633‒636.
|
浙江大学能源工程学院罗坤教授、赵阳教授、王帅研究员在研究讨论中提供了宝贵意见和深刻见解,谨致谢意。
/
〈 |
|
〉 |