全再生混凝土大跨梁的变形性能与低碳评价

肖建庄, 潘玉珀, 王春晖, 房海波, 梁汝鸣, 葛序尧, 王璞瑾, 关湘烁, 徐浩林, 宁甲乾, 何尧, 丁陶, 肖绪文

中国工程科学 ›› 2025

PDF(2712 KB)
PDF(2712 KB)
中国工程科学 ›› 2025 DOI: 10.15302/J-SSCAE-2025.04.013

全再生混凝土大跨梁的变形性能与低碳评价

作者信息 +

Deformation Behavior and Low-Carbon Assessment of Large-Span Beam with Fully Recycled Concrete

Author information +
History +

摘要

在建筑固体废物(固废)激增、“双碳”目标推进的双重驱动下,全再生粗骨料混凝土(简称全再生混凝土、FRCAC,取代率为100%)在结构工程中的应用成为破解资源环境约束、重塑低碳结构体系的突破口。然而现行规范体系因缺乏实际工况下的长期实证数据,制约FRCAC相关的技术更新和规模化应用进程。本文着眼“突破技术瓶颈、驱动规范升级、推动低碳应用”,率先以30 m跨度的FRCAC简支梁为工程原型开展前瞻性探索,旨在全面研究FRCAC结构的服役性能。FRCAC受压区边缘的最大压应力约为混凝土轴心抗压强度的50%,能够模拟FRCAC构件在实际荷载作用下的受力状态,支持量化FRCAC结构在长期荷载 ‒ 环境耦合作用下的性能演化规律与低碳效益。设计并浇筑等配筋、等水胶比的FRCAC梁和普通混凝土(NAC)对照梁,构建覆盖“材料制备 ‒ 构件行为 ‒ 碳效益量化”全链条,追踪4年服役期内变形、裂缝、碳化深度等的演变过程,应用生命周期评价模型获得量化的碳吸收效应。研究结果表明,同条件养护下FRCAC的弹性模量较NAC降低7.8%~14%,可通过预起拱方式补偿变形差异并满足结构变形要求;FRCAC梁表面的受弯裂缝数量较NAC梁增长8%,裂缝长度增长15%,但平均宽度基本一致;考虑服役期的碳吸收后,FRCAC梁的净碳排放降低7.69%。首次以工程原型实证了FRCAC在实际荷载 ‒ 环境耦合工况下的应用可行性,将促进结构工程低碳化的理论与工程发展,推动建筑固废从粗放化填埋转向高值化利用。

Abstract

As global construction solid wastes surged and to achieve the carbon peak and carbon neutrality goals, the application of fully recycled coarse aggregate concrete (FRCAC, 100% replacement rate) in structural engineering has emerged as a breakthrough solution to addressing resource-environmental constraints and reshaping low-carbon structural systems. However, current codes and standards lack long-term empirical data under actual service conditions, constraining technological updates and large-scale application. This study aims to break technological bottlenecks, drive code upgrades, and promote low-carbon application. It explores the service performance of FRCAC structures using a 30-m-span simply supported beam as the engineering prototype. Under self-weight loading, the maximum compressive stress at the edge of the compression zone of FRCAC is approximately 50% of its axial compressive strength, simulating the stress state under actual loading conditions, thus enabling quantitative analysis of performance evolution mechanisms and low-carbon benefits under long-term coupled effects of mechanical loading and environmental exposure. Through designing comparative beams with equivalent reinforcement and water-to-binder ratios between FRCAC and conventional concrete, we established a comprehensive framework covering material preparation, component behaviors, and carbon benefit quantification. We tracked deformations, crack patterns, and carbonation depth evolution over 4-year service periods, and quantified carbon absorption effects using life cycle assessment models. Results demonstrate that although FRCAC exhibits 7.8%~14% reduced elastic modulus under the same-condition curing, pre-cambering completely compensates deformation discrepancies, satisfying structural requirements. While bending cracks increased by 8% and the crack length increased by 15%, the average width remained comparable to conventional concrete. Considering service-period carbon absorption, FRCAC beams achieved 7.69% reduction in net carbon emissions. This study pioneers engineering prototype validation of FRCAC's feasibility under actual load-environment coupling conditions. The findings are expected to advance the transformation of construction wastes from extensive landfilling to high-value utilization, providing a forward-looking solution for low-carbon structural engineering.

关键词

全再生粗骨料混凝土 / 30 m跨度工程原型梁 / 动态监测 / 生命周期评价 / 碳排放

Keywords

fully recycled coarse aggregate concrete (FRCAC) / 30-m-span engineering prototype beam / dynamic monitoring / life cycle assessment / carbon emissions

引用本文

导出引用
肖建庄, 潘玉珀, 王春晖. 全再生混凝土大跨梁的变形性能与低碳评价. 中国工程科学. 2025 https://doi.org/10.15302/J-SSCAE-2025.04.013

参考文献

[1]
肖建庄, 陈家珑‍. 建筑固废资源化与产业化 [M]. 北京: 科学出版社, 2024.
Xiao J Z, Chen J L. Reclamation and industrialization for construction and demolition waste [M]. Beijing: Science Press, 2024.
[2]
Xiao J Z. Recycled aggregate concrete structures [M]. Berlin: Springer, 2018.
[3]
曹万林, 肖建庄, 叶涛萍, 等‍. 钢筋再生混凝土结构研究进展及其工程应用 [J]. 建筑结构学报, 2020, 41(12): 1‒16, 27.
Cao W L, Xiao J Z, Ye T P, et al. Research progress and engineering application of reinforced recycled aggregate concrete structure [J]. Journal of Building Structures, 2020, 41(12): 1‒16, 27.
[4]
王健, 韦锦帆, 杜进生, 等‍. 再生混凝土梁与普通混凝土梁的受力性能等效方法研究 [J]. 建筑结构学报, 2020, 41(S1): 256‒264.
Wang J, Wei J F, Du J S, et al. Study on equivalent method of mechanical properties of recycled concrete beams and ordinary concrete beams [J]. Journal of Building Structures, 2020, 41(S1): 256‒264.
[5]
罗素蓉, 黄海生, 郑建岚‍. 再生骨料混凝土徐变性能试验研究 [J]. 建筑结构学报, 2016, 37(S2): 115‒120.
Luo S R, Huang H S, Zheng J L. Experimental study on creep property of recycled aggregate concrete [J]. Journal of Building Structures, 2016, 37(S2): 115‒120.
[6]
张鹏远‍. 再生混凝土材料阻尼及其非线性特性研究 [D]. 北京: 北京交通大学(博士学位论文), 2021.
Zhang P Y. Investigation of material damping and nonlinear chaFRCACteristics of recycled aggregate concrete. [D]. Beijing: Beijing Jiaotong University (Doctoral dissertation), 2021.
[7]
张蓉, 崔云鹏, 赵硕‍. 再生混凝土在装配式建筑中的试验研究与工程应用 [J]. 混凝土, 2024 (12): 196‒201.
Zhang R, Cui Y P, Zhao S. Experimental study and engineering application of recycled concrete in prefabricated building [J]. Concrete, 2024 (12): 196‒201.
[8]
杨海涛, 练鑫晟, 柳苗, 等‍. 混凝土全寿命周期固碳技术研究进展 [J]. 材料导报, 2025, 39(2): 79‒86.
Yang H T, Lian X S, Liu M, et al. Progress on carbon sequestration technologies for the full life-cycle of concrete [J]. Materials Reports, 2025, 39(2): 79‒86.
[9]
Arvanitoyannis I S. Waste management for the food industries [M]. Amsterdam: Elsevier, 2008.
[10]
Finkbeiner M, Inaba A, Tan R, et al. The new international standards for life cycle assessment: ISO 14040 and ISO 14044 [J]. The International Journal of Life Cycle Assessment, 2006, 11(2): 80‒85.
[11]
Hossain M U, Poon C S, Lo I M C, et al. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA [J]. Resources, Conservation and Recycling, 2016, 109: 67‒77.
[12]
王玉‍. 工业化预制装配建筑的全生命周期碳排放研究 [D]. 南京: 东南大学(博士学位论文), 2016.
Wang Y. Whole life cycle carbon emissions research of industrialized precast construction [D]. Nanjing: Southeast University (Doctoral dissertation), 2016.
[13]
Kikuchi T, Kuroda Y. Carbon dioxide uptake in demolished and crushed concrete [J]. Journal of Advanced Concrete Technology, 2011, 9(1): 115‒124.
[14]
Huang K W, Li A, Xia B, et al. Prediction on CO2 uptake of recycled aggregate concrete [J]. Frontiers of Structural and Civil Engineering, 2020, 14(3): 746‒759.
[15]
Wijayasundara M, Mendis P, Ngo T. Comparative assessment of the benefits associated with the absorption of CO2 with the use of RCA in structural concrete [J]. Journal of Cleaner Production, 2017, 158: 285‒295.
[16]
王载‍. 高层结构全生命周期碳排放评估及低碳设计方法研究 [D]. 哈尔滨: 哈尔滨工业大学(博士学位论文), 2021.
Wang Z. Investigation of life cycle carbonemission assessment and low-carbon design method of high-rise buildings [D]. Harbin: Harbin Institute of Technology (Doctoral dissertation), 2021.
[17]
中华人民共和国住房和城乡建设部‍. 建筑碳排放计算标准: GB/T 51366—2019 [S]. 北京: 中国建筑工业出版社, 2019.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for building carbon emission calculation: GB/T 51366—2019 [S]. Beijing: China Architecture & Building Press, 2019.
[18]
韦保仁, 王俊, 田原聖隆, 等‍. 苏州城市生活垃圾处置方法的生命周期评价 [J]. 中国人口·资源与环境, 2009, 19(2): 93‒97.
Wei B R, Wang J, Kiyotaka T, et al. Life cycle assessment on disposal methods of municipal solid waste in Suzhou [J]. China Population Resources and Environment, 2009, 19(2): 93‒97.
[19]
Li J R, Xia R R, Li J, et al. Environmental impact assessment of construction and demolition waste recycling in Shenzhen [R]. Singapore: The 20th International Symposium on Advancement of Construction Management and Real Estate, 2016.
[20]
Xia C Y, Li Y, Xu T B, et al. Quantifying the spatial patterns of urban carbon metabolism: A case study of Hangzhou, China [J]. Ecological Indicators, 2018, 95: 474‒484.
[21]
Guo Z, Shi H H, Zhang P D, et al. Material metabolism and lifecycle impact assessment towards sustainable resource management: A case study of the highway infrastructural system in Shandong Peninsula, China [J]. Journal of Cleaner Production, 2017, 153: 195‒208.
[22]
Tang Y X, Xiao J Z, Liu Q, et al. Natural gravel-recycled aggregate concrete applied in rural highway pavement: Material properties and life cycle assessment [J]. Journal of Cleaner Production, 2022, 334: 130219.
[23]
Tošić N, Marinković S, Dašić T, et al. Multicriteria optimization of natural and recycled aggregate concrete for structural use [J]. Journal of Cleaner Production, 2015, 87: 766‒776.
[24]
肖建庄, 黎骜, 丁陶‍. 再生混凝土生命周期CO2排放评价 [J]. 东南大学学报(自然科学版), 2016, 46(5): 1088‒1092.
Xiao J Z, Li A, Ding T. Life cycle assessment on CO2 emission for recycled aggregate concrete [J]. Journal of Southeast University (Natural Science Edition), 2016, 46(5): 1088‒1092.
[25]
蔡博峰, 赵良, 张哲, 等‍. 中国区域电网二氧化碳排放因子研究(2023) [R]. 北京: 生态环境部环境规划院, 2023.
Cai B F, Zhao L, Zhang Z, et al. China regional power grids carbon dioxide emission factors (2023) [R]. Beijing: Chinese academy of Environmental Planning, 2023.
[26]
李小冬, 王帅, 孔祥勤, 等‍. 预拌混凝土生命周期环境影响评价 [J]. 土木工程学报, 2011, 44(1): 132‒138.
Li X D, Wang S, Kong X Q, et al. Life cycle assessment of environmental impacts of ready-mixed concrete [J]. China Civil Engineering Journal, 2011, 44(1): 132‒138.
[27]
Jayasinghe A, Orr J, Hawkins W, et al. Comparing different strategies of minimising embodied carbon in concrete floors [J]. Journal of Cleaner Production, 2022, 345: 131177.
[28]
江苏省民用建筑碳排放计算导则 [EB/OL]. (2023-09-15)[2025-04-15]. https://file.smejs.cn/group1/M00/05/18/rBIAAWUT1kqAcQd6ABvHY8xisiY591.pdf.
Guidelines for calculating carbon emissions from civil buildings in Jiangsu Province [EB/OL]. (2023-09-15)[2025-04-15]. https://file.smejs.cn/group1/M00/05/18/rBIAAWUT1kqAcQd6ABvHY8xisiY591.pdf.
[29]
肖建庄, 关湘烁, 王佃超, 等‍. 再生混凝土碳排放因子研究 [J]. 建筑科学与工程学报, 2023, 40(4): 1‒11.
Xiao J Z, Guan X S, Wang D C, et al. Researches on carbon emission factors of recycled concrete [J]. Journal of Architecture and Civil Engineering, 2023, 40(4): 1‒11.
[30]
Chen C, Habert G, Bouzidi Y, et al. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete [J]. Resources, Conservation and Recycling, 2010, 54(12): 1231‒1240.
[31]
Torgal F P, Jalali S. Eco-efficient construction and building materials [M]. London: Springer London, 2014.
[32]
van Roijen E, Miler S A, Davis S J. Building materials could store more than 16 bilion tonnes of CO2 annually [J]. Science, 2025, 387(6730): 176‒182.
[33]
中国工程院‍.我国碳达峰碳中和战略及路径 [R]. 北京: 中国工程院, 2022.
Chinese Academy of Engineering. China's strategies and pathways for carbon peaking and carbon neutrality [R]. Beijing: Chinese Academy of Engineering, 2022.
[34]
Xiao J Z, Zhang H H, Tang Y X, et al. Fully utilizing carbonated recycled aggregates in concrete: Strength, drying shrinkage and carbon emissions analysis [J]. Journal of Cleaner Production, 2022, 377: 134520.
基金
国家重点研发计划项目(2022YFC3803401); 中国工程院咨询项目“绿色建造发展战略研究”(2022-XZ-21)
PDF(2712 KB)

Accesses

Citation

Detail

段落导航
相关文章

/