基于跨尺度仿生思想的地下生态城市构建新范式
A New Paradigm for Constructing Underground Eco-cities Based on the Concept of Cross-Scale Bionics
向地下深部寻求发展空间成为应对土地资源紧张、可持续发展受限背景下的自然选择,构建地下生态城市受到深地、深空等国家战略的直接牵引,也与应对极端环境等重大需求相契合;传统的地下开发模式功能单一、形态僵化、生态循环能力不足,难以支撑相关新兴需求,亟待研究新的构建范式及发展路径。本文在系统把握地下生态城市发展背景并辨析研究突破方向的基础上,基于跨尺度仿生思想提出了地下生态城市构建新范式。精准解析了蚂蚁巢穴的微观几何形态与力学机制并揭示了应力管理、能耗优化、系统协同等方面的卓越机制,凝练出中观尺度上的韧性、可持续循环、分布式智能等核心设计原则,进而映射至宏观地下城市的功能拓扑结构与深部应力自适应形态;以此方法论为指导构建了深度可扩展、形态随深度自适应演变的地下生态城市三维战略蓝图,依托国内外前沿工程实践作出从生物学智慧到工程现实的路径是畅通的基本判断;面向未来应用,阐述了“感知 ‒ 建模 – 调控 – 决策”全链条关键技术、“法制 – 社会 – 经济”协同管理等发展要素。相关内容将直接推动地下开发从被动适应到主动塑造的根本性转变,兼有普适性与良好的可移植性,为服务深空重大战略、构建地外天体地下栖息地等提供了理论借鉴。
Extending urban development underground has become a natural choice in response to land resource constraints and limitations on sustainable development. The construction of underground eco-cities is directly driven by national strategies such as those for deep-Earth and deep-space exploration, and aligns with major needs such as coping with extreme environments. Conventional underground development models are characterized by single functionality, rigid morphology, and insufficient ecological circulation capacity, making them inadequate to support emerging demands. There is a pressing need to research new paradigms and formulate their development pathways. Based on a systematic understanding of the development context of underground eco-cities and an analysis of key research breakthroughs, this study proposes a new paradigm for constructing underground eco-cities based on the concept of cross-scale bionics. It precisely analyzes the micro-geometric morphology and mechanical mechanisms of ant nests, revealing their excellent mechanisms in stress management, energy consumption optimization, and system synergy. Core design principles at the meso-scale, such as resilience, sustainable circulation, and distributed intelligence, are identified and then mapped onto the macro-scale functional topological structure and deep stress-adaptive morphology of underground cities. Guided by this methodology, a three-dimensional strategic blueprint for a depth-scalable, morphologically adaptive underground eco-city is constructed. Based on cutting-edge engineering practices both in China and abroad, it is preliminarily judged that the pathway from biological wisdom to engineering practices is viable. For future applications, key enabling technologies across the entire chain of "perception–modeling–regulation–decision-making" and developmental elements like synergistic "legal–social–economic" management are elaborated. This study will directly promote a fundamental shift in underground development from passive adaptation to active shaping. The new paradigm proposed possesses both universality and good transferability, providing theoretical references for serving deep space strategies and constructing subsurface habitats on extraterrestrial celestial bodies.
地下生态城市 / 跨尺度仿生 / 深地开发 / 地下栖息地 / 生态循环 / 自适应
underground eco-city / cross-scale bionics / deep underground development / subsurface habitat / ecological circulation / adaptability
| [1] |
央广网. 深地经济概念活跃 新经济带来哪些板块新热点 [EB/OL]. (2025-09-17)[2026-01-15]. https://www.cnr.cn/2025-09-17. |
| [2] |
China National Radio. Active deep earth economy concept: What new hotspots does the new economy bring [EB/OL]. (2025-09-17)[2026-01-15]. https://www.cnr.cn/2025-09-17. |
| [3] |
谢和平, 高明忠, 张茹, 地下生态城市与深地生态圈战略构想及其关键技术展望 [J]. 岩石力学与工程学报, 2017, 36(6): 1301‒1313. |
| [4] |
Xie H P, Gao M Z, Zhang R, et al. The subversive idea and its key technical prospect on underground ecological city and ecosystem [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1301‒1313. |
| [5] |
谢和平, 高峰, 鞠杨, 深地科学领域的若干颠覆性技术构想和研究方向 [J]. 工程科学与技术, 2017, 49(1): 1‒8. |
| [6] |
Xie H P, Gao F, Ju Y, et al. Novel idea and disruptive technologies for the exploration and research of deep earth [J]. Advanced Engineering Sciences, 2017, 49(1): 1‒8. |
| [7] |
Xie H P, Zhang Y H, Chen Y Y, et al. A case study of development and utilization of urban underground space in Shenzhen and the Guangdong–Hong Kong–Macao Greater Bay Area [J]. Tunnelling and Underground Space Technology, 2021, 107: 103651. |
| [8] |
Soureshjani O K, Massumi A, Nouri G. Sustainable colonization of Mars using shape optimized structures and in situ concrete [J]. Scientific Reports, 2023, 13: 15747. |
| [9] |
Feng Y J, Pan P Z, Tang X H, et al. A comprehensive review of lunar lava tube base construction and field research on a potential earth test site [J]. International Journal of Mining Science and Technology, 2024, 34(9): 1201‒1216. |
| [10] |
Carrer L, Bruzzone L, Bosch J J, et al. Radar evidence of an accessible cave conduit on the moon [J]. Nature Astronomy, 2024, 8(8): 995‒1002. |
| [11] |
梁乐. 火星上建基地,如何就地取材 [N]. 科技日报, 2024-10-24 (06). |
| [12] |
Liang L. How to build a base on mars using local materials [N]. Science and Technology Daily, 2024-10-24 (06). |
| [13] |
Fishman C. Everyone wants a piece of the moon—What could go wrong [EB/OL]. (2025-08-18)[2026-01-15]. https://www.nationalgeographic.com/science/graphics/moon-base-exploration-lunar-surface. |
| [14] |
刘霞. 合成生物学能将火星打造成宜居家园吗 [N]. 科技日报, 2025-05-12 (04). |
| [15] |
Liu X. Can synthetic biology turn mars into a habitable home? [N]. Science and Technology Daily, 2025-05-12 (04). |
| [16] |
Zhou C, Cheng S S, Gao Y Y, et al. Zhuque base for martian habitation: Conceptual design and performance analysis of cave dwellings and in situ construction [J]. Research, 2025, 8: 0849. |
| [17] |
Xia Y F, Gao Y Y, Han W B, et al. Lunar base infrastructure construction: Challenges and future directions [J]. Automation in Construction, 2025, 176: 106251. |
| [18] |
von der Tann L, Sterling R, Zhou Y X, et al. Systems approaches to urban underground space planning and management—A review [J]. Underground Space, 2020, 5(2): 144‒166. |
| [19] |
von der Tann L, Ritter S, Hale S, et al. From urban underground space (UUS) to sustainable underground urbanism (SUU): Shifting the focus in urban underground scholarship [J]. Land Use Policy, 2021, 109: 105650. |
| [20] |
Peng F L, Dong Y H, Wang W X, et al. The next frontier: Data-driven urban underground space planning orienting multiple development concepts [J]. Smart Construction and Sustainable Cities, 2023, 1(1): 3. |
| [21] |
Peng F L, Wang W X, Qiao Y K, et al. Review on data-informed planning for underground space [J]. Underground Space, 2026, 26: 257‒281. |
| [22] |
Dempster W F. Biosphere 2 engineering design [J]. Ecological Engineering, 1999, 13(1/2/3/4): 31‒42. |
| [23] |
Nelson M. Biosphere 2's lessons about living on earth and in space [J]. Space: Science & Technology, 2021: 8067539. |
| [24] |
Allen J P, Nelson M, Alling A. The legacy of biosphere 2 for the study of biospherics and closed ecological systems [J]. Advances in Space Research, 2003, 31(7): 1629‒1639. |
| [25] |
Dinell H, Mathis K, Bronstein J. Biosphere 2 reexamined: Ant species composition within a human-constructed ecosystem [J]. The Southwestern Naturalist, 2023, 68(2): 150. |
| [26] |
Dorigo M, Stützle T. Ant colony optimization [M]. Cambridge: MIT Press, 2004. |
| [27] |
Dorigo M, Birattari M, Blum C, et al. Ant colony optimization and swarm intelligence [R]. Brussels: The 6th International Workshop, ANTS 2008, 2008. |
| [28] |
Liu M J, Li Y H, Li A, et al. A slime mold-ant colony fusion algorithm for solving traveling salesman problem [J]. IEEE Access, 2020, 8: 202508‒202521. |
| [29] |
Tschinkel W R. The nest architecture of the Florida harvester ant, Pogonomyrmex badius [J]. Journal of Insect Science, 2004, 4: 21. |
| [30] |
Tschinkel W R. Methods for casting subterranean ant nests [J]. Journal of Insect Science, 2010, 10: 88. |
| [31] |
Tschinkel W R. Ant architecture: The wonder, beauty, and science of underground nests [M]. Princeton: Princeton University Press, 2021. |
| [32] |
Belachew M, Yamamoto K, Nichols E, et al. Ant nest geometry, stability, and excavation–inspiration for tunneling [J]. Acta Geotechnica, 2024, 19(3): 1295‒1313. |
| [33] |
Belachew M, Arson C, Frost J D. Insights from studies on the spatial distribution of chambers in ant nests [J]. IOP Conference Series: Earth and Environmental Science, 2025, 1480(1): 012100. |
| [34] |
韩凯航, 黎俊轩, 陈湘生, 超大城市地下空间系统智慧韧性发展策略研究 [J]. 中国工程科学, 2025, 27(4): 95‒105. |
| [35] |
Han K H, Li J X, Chen X S, et al. Development strategy for intelligent resilience of underground space system in megacities [J]. Strategic Study of CAE, 2025, 27(4): 95‒105. |
| [36] |
谢和平, 李存宝, 高明忠, 深部原位岩石力学构想与初步探索 [J]. 岩石力学与工程学报, 2021, 40(2): 217‒232. |
| [37] |
Xie H P, Li C B, Gao M Z, et al. Conceptualization and preliminary research on deep in situ rock mechanics [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 217‒232. |
| [38] |
王驹, 云龙. 高放废物地质处置地下实验室的定义、分类和功能以及我国北山下实验室的科研规划 [J]. 物探与化探, 2024, 48(6): 1507‒1518. |
| [39] |
Wang J, Yun L. Definition, classification, and functions of underground research laboratories for the geological disposal of high-level radioactive waste and the scientific research plan of Beishan underground research laboratory [J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1507‒1518. |
| [40] |
云龙, 王驹, 杨晓平, 高放废物处置地下实验室结构稳定性评价方法 [J]. 世界核地质科学, 2025, 42(1): 110‒122. |
| [41] |
Yun L, Wang J, Yang X P, et al. Structural stability evaluation method of underground research laboratory (URL) for geological disposal of high-level radioactive waste in China [J]. World Nuclear Geoscience, 2025, 42(1): 110‒122. |
| [42] |
云龙, 陈苏, 傅磊, 高放废物北山地下实验室硐室群地震动反应特征研究 [J]. 物探与化探, 2024, 48(6): 1519‒1529. |
| [43] |
Yun L, Chen S, Fu L, et al. Seismic response characteristics of the cavern group of the Beishan underground research laboratory for the geological disposal of high-level radioactive waste [J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1519‒1529. |
| [44] |
Joutsenvaara J, Puputti J, Holma M, et al. Callio lab: An underground and above ground, laboratory—Overview and prospects for high energy and applied physics [J]. Frontiers in Physics, 2024, 12: 1317659. |
| [45] |
Joutsenvaara J, Aittola M, Holma M, et al. The deep underground Callio SpaceLab, Finland—Sustainable living, sustaining life [R]. Online: EGU General Assembly Conference, 2021. |
| [46] |
Saracino G, Amato L, Ambrosino F, et al. Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples) [J]. Scientific Reports, 2017, 7: 1181. |
| [47] |
Benhammou Y, Weissbein A, Zolkin I. First demonstration of underground muon imaging at an archaeological site in ancient Jerusalem [J]. Journal of Applied Physics, 2025, 138(8): 084504. |
| [48] |
张双全. 二维大地电磁各向异性理论与反演 [D]. 长春: 吉林大学(硕士学位论文), 2021. |
| [49] |
Zhang S Q. Theoretical and inversion research of magnetotelluric fields in two-dimensional anisotropic media [D]. Changchun: Jilin University (Master's thesis), 2021. |
| [50] |
肖万成, 罗思远, 何列, 基于缪子成像技术对浅层与深层地质结构的模拟研究 [J]. 核技术, 2024, 47(9): 090201. |
| [51] |
Xiao W C, Luo S Y, He L, et al. Simulation study on shallow and deep geological structures based on muon imaging technology [J]. Nuclear Techniques, 2024, 47(9): 090201. |
| [52] |
黄力平, 雷江松, 宋天田, 高能宇宙线缪子成像技术在盾构隧道中的应用 [J]. 现代隧道技术, 2025, 62(5): 251‒258. |
| [53] |
Huang L P, Lei J S, Song T T, et al. Application of high-energy cosmic ray muon imaging technology in shield tunnels [J]. Modern Tunnelling Technology, 2025, 62(5): 251‒258. |
| [54] |
姚凯强, 苏宝鹏, 李卓岱, 宇宙射线缪子成像技术在中国的研究进展 [J]. 中国无机分析化学, 2024, 14(6): 715‒731. |
| [55] |
Yao K Q, Su B P, Li Z D, et al. Research progress of muography in China [J]. Chinese Jorunal of Inorganic Analytical Chemistry, 2024, 14(6): 715‒731. |
| [56] |
王明超, 刘宝鸿, 张斌, 利用高分辨率波阻抗反演技术预测薄储层——以辽河坳陷牛居地区为例 [J]. 石油地球物理勘探, 2018, 53(S1): 186‒190. |
| [57] |
Wang M C, Liu B H, Zhang B, et al. Thin bed prediction with high-resolution impedance inversion: A case study of Niuju Area, Liaohe Basin [J]. Oil Geophysical Prospecting, 2018, 53(S1): 186‒190. |
| [58] |
王华, 张雨顺. 测井资料人工智能处理解释的现状及展望 [J]. 测井技术, 2021, 45(4): 345‒356. |
| [59] |
Wang H, Zhang Y S. Research status and prospect of artificial intelligence in logging data processing and interpretation [J]. Well Logging Technology, 2021, 45(4): 345‒356. |
| [60] |
李根生, 宋先知, 田守嶒. 智能钻井技术研究现状及发展趋势 [J]. 石油钻探技术, 2020, 48(1): 1‒8. |
| [61] |
Li G S, Song X Z, Tian S C. Intelligent drilling technology research status and development trends [J]. Petroleum Drilling Techniques, 2020, 48(1): 1‒8. |
| [62] |
康红普, 王金华, 林健. 高预应力强力支护系统及其在深部巷道中的应用 [J]. 煤炭学报, 2007, 32(12): 1233‒1238. |
| [63] |
Kang H P, Wang J H, Lin J. High pretensioned stress and intensive bolting system and its application in deep roadways [J]. Journal of China Coal Society, 2007, 32(12): 1233‒1238. |
| [64] |
康红普, 牛多龙, 张镇, 深部沿空留巷围岩变形特征与支护技术 [J]. 岩石力学与工程学报, 2010, 29(10): 1977‒1987. |
| [65] |
Kang H P, Niu D L, Zhang Z, et al. Deformation characteristics of surrounding rock and supporting technology of gob-side entry retaining in deep coal mine [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1977‒1987. |
| [66] |
许益民, 刘占鹏, 高猛, 9000 m智能钻机关键技术 [J]. 石油机械, 2019, 47(9): 57‒62. |
| [67] |
Xu Y M, Liu Z P, Gao M, et al. Key technology of 9000 m intelligent drilling rig [J]. China Petroleum Machinery, 2019, 47(9): 57‒62. |
| [68] |
洪开荣. 超长深埋高地应力TBM隧道修建关键技术 [J]. 铁道学报, 2022, 44(3): 1‒23. |
| [69] |
Hong K R. Key technology for construction of ultra-long and deep-buried TBM tunnels with high geostress [J]. Journal of the China Railway Society, 2022, 44(3): 1‒23. |
| [70] |
马健. 植物照明LED光源光度系统与光量子系统转化系数的计算和应用 [J]. 照明工程学报, 2022, 33(5): 110‒114. |
| [71] |
Ma J. Calculation and application of conversion coefficient between photometric system and light quantity subsystem of LED light source for plant lighting [J]. China Illuminating Engineering Journal, 2022, 33(5): 110‒114. |
| [72] |
李阳. 中科生物植物工厂关键技术科技创新和产业化 [J]. 中国农村科技, 2023 (2): 6‒10. |
| [73] |
Li Y. Scientific and technological innovation and industrialization of key technologies of zhongke biological plant factory [J]. China Rural Science & Technology, 2023 (2): 6‒10. |
| [74] |
何满潮, 郭平业. 深部岩体热力学效应及温控对策 [J]. 岩石力学与工程学报, 2013, 32(12): 2377‒2393. |
| [75] |
He M C, Guo P Y. Deep rock mass thermodynamic effect and temperature control measures [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2377‒2393. |
| [76] |
Zhao Y M, Han Y, Kou Y Y, et al. Three-dimensional, real-time, and intelligent data acquisition of large deformation in deep tunnels [J]. Advances in Civil Engineering, 2021 (1): 6671118. |
| [77] |
Tan C H, Ng M, Shaiful D S B, et al. A smart unmanned aerial vehicle (UAV) based imaging system for inspection of deep hazardous tunnels [J]. Water Practice and Technology, 2018, 13(4): 991‒1000. |
| [78] |
唐宇译, 叶春丽. 中国科学院智能导钻系统在塔里木盆地6000 m超深井成功完成多项实钻试验 [J]. 测井技术, 2023, 47(1): 6. |
| [79] |
Tang Y Y, Ye C L. The intelligent pilot drilling system of China Academy of Sciences has successfully completed a number of practical drilling tests in the 6000 m ultra-deep well in Tarim Basin [J]. Well Logging Technology, 2023, 47(1): 6. |
国家自然科学基金项目(52090084)
中国工程院咨询项目“2025年度中国城市地下空间发展研究”(2025-HZ-08)
“特大城市地下空间综合开发、高效利用与数智治理”(2024-JZ-06)
/
| 〈 |
|
〉 |