
复杂耦合系统的统计能量分析及其应用
盛美萍
Statistical Energy Analysis for Complicated Coupled System and Its Application in Engineering
Sheng Meiping
文章综合导纳分析法、经典统计能量分析方法和经典功率流理论的各自优点,提出适合复杂耦合系统的统计能量分析方法,为研究实际机械结构之间的振动传递规律、复杂机械系统的声辐射特性提供理论依据,为实际工程结构的振动隔离、噪声治理提供理论指导。文章首次提出统计能量分析参数必须统一定义,将影响实际机械结构相互之间能量传递的若干要素各自分离,并引入相应的参数分别开展研究。利用理论研究的成果,发展后的统计能量分析首次应用于水下航行器振动和噪声特性分析,预报了水下航行器的振动传递规律和辐射噪声级。理论分析与实验测试结果符合较好。文章指出了水下航行器噪声治理的方向。
The new SEA method developed in this dissertation is the integration of virtues from the mobility analysis, classical SEA and classical theory of power flow, which fits for vibration and noise analysis of complicated coupled systems. This research provides a theoretical base for study on vibration transfer between structures and noise radiation of complicated mechanical systems, and it also offers guidance for isolation and noise control of engineering structures. Contributions of this dissertation are as follows: First, in view of the disunion of SEA parameters in classical SEA, a union definition of SEA parameters is brought forward. Secondly, some elements that influence energy transfer between mechanical structures are separated and corresponding parameters are introduced to investigate those influences separately. (1)Linking style coefficient is introduced to denote the rule of vibration energy transfer when structures are linked at one point, some points or a line. (2) Non-conservative coupling coefficient is introduced to describe the influence of isolation or damping when structures are isolated or damped. (3) Indirect coupling coefficient is introduced to research the property of vibration energy transfer when two structures are indirectly linked by other structure. Thirdly, on the basis of above, gradation analysis is put forward to simplify the vibration analysis of complicated coupled system. Then, by using theoretical achievements above, the property of vibration and noise radiation of underwater vehicle is analyzed by the developed SEA for the first time. Levels of vibration and sound power induced by two different underwater vehicles are predicted. The analysis results agree well with experiment results. Finally, based on the analysis, the direction of noise control of underwater vehicle is pointed out.
power flow / statistical energy analysis(SEA) / mobility / coupling
/
〈 |
|
〉 |