单元体斜截面上的应力不是其上质点平衡的应力

韩文坝1、蔡冰清2、刘大斌3、韩晓东4

中国工程科学 ›› 2005, Vol. 7 ›› Issue (11) : 42-47.

PDF(3080 KB)
PDF(3080 KB)
中国工程科学 ›› 2005, Vol. 7 ›› Issue (11) : 42-47.
学术论文

单元体斜截面上的应力不是其上质点平衡的应力

  • 韩文坝1、蔡冰清2、刘大斌3、韩晓东4

作者信息 +

The Balancing Stress in the Tilted Section of the Element Is Not the Stress for the Balance of the Particle on It

  • Han Wenba1、 Cai Bingqing2、 Liu Dabin3、 Han Xiaodong4

Author information +
History +

摘要

以直杆轴向拉伸为例说明:单元体斜截面上的平衡应力只是保证斜截单元体平衡的应力,不是保证其上质点平衡的应力;单元体平衡与质点平衡是不同的。推导出二向应力状态下质点的平衡应力为σ′α=(σ2x2y+2τ2+2τ(σ2x2y)1/2(sinα2+cosα2))1/2,质点平衡应力σ′α与x轴的夹角为αx=arctan(τ+(σ2x2y)1/2sin arctan (σyx))/(τ+(σ2x2y)1/2cos arctan(σyx))。推导出二向应力状态质点平衡应力的极值条件:σxy;应力σ'α在与X轴成45°的对角线上;极大值为σ'α max=21/2x+τ)。推导出质点平衡应力比最大主应力σ1x+τ大21/2倍。指出σ'α max与σ1分别发生在两个互相垂直的对角线平面上,且与x轴夹角分别为±45°。 用质点平衡应力建立了新的拉(弯)一剪(扭)组合变形条件σ'α=(σ2 + 2τ2+2στ)1/2≤ [σ],它不同于现行 的第三强度理论公式(σ2 + 4τ2)1/2≤ [σ]和第四强度理论公式(σ2 + 3τ2)1/2< [σ];同时,建立了三向应力状 态下第四强度理论的新公式σ'd= (σ212223)1/2≤ [σ],进而推导出正方体被三向等应力拉伸时其最小破坏 应力值为0.58σs。它不同于现行的第四强度理论公式σxd[ (σ12)2+ (σ23)2+ (σ31)2) /2]1/2≤ [σ],推翻了正方体被三向等应力拉伸时,无论多大应力都不会被破坏的错误结论。

Abstract

From the pure extension of the straight bar it can be seen that the balancing stress in the tilted section of the element can only ensure the balance of itself, but can’t ensure the balance of particles on it. The difference between the balance of the element and that of particles on it is demonstrated. A conclusion is drawn that the balancing stress of particles under two dimension stress state is written as σ'α = σ2x +σ2y+ 2τ2+2τ(σ2x2y1/2(sinα2 + cosα2))1/2,and the angle between the direction of the balance stress and axis is written as αx= arctan ( τ + (σ2x + σ2y)1/2 sin arctan (σyx)) /(τ + (σ2x2y1/2 cos arctan (σyx)). Under two dimension stress state, the principal stress of element and the maximum balancing stress of particles both take place in the 45°diagonal plane, and the balancing stress of particles is 21/2 times that of the principal stress. A new two dimension combining strength condition is derived as σ'α = (σ2 + 2τ2 + 2στ )1/2≤[σ], and it will replace the formula of bend-torsion combining strength condition of third strength theory ( σ2 + 4τ2)1/2≤[σ] and that of fourth strength theory( σ2 + 3τ2)1/2≤[σ]. A new three dimension combining strength condition is derived as σ'd =(σ212223)1/2[σ]and can replace the wrong formula σxd=[((σ12)2 +(σ23)2 +(σ31)2)/2 ]1/2≤[σ] , which is the corresponding strength formula of the fourth strength theory.

关键词

应力 / 斜截面 / 质点平衡应力 / 强度理论

Keywords

stress / tilted section / balance stress of particle / strength theory

引用本文

导出引用
韩文坝,蔡冰清,刘大斌,韩晓东. 单元体斜截面上的应力不是其上质点平衡的应力. 中国工程科学. 2005, 7(11): 42-47

参考文献

PDF(3080 KB)

Accesses

Citation

Detail

段落导航
相关文章

/