
时滞系统的辨识及NARMA模型的修正
王冬青1,2
Identification of Time-delay Systems and Correction of NARMA Model
Wng Dongqing1,2
对现有神经网络对非线性时滞系统的时滞辨识方法进行了补充说明和分析,同时指出现有的NARMA模型修正方法对时滞系统的不当之处。以时滞系统神经网络预测控制为例,介绍了NARMA模型的正确修正方法,仿真证明了所提出的修正方法能获得好的控制性能及抗干扰能力。
The paper introduces complemental explanation and analysis of existing time-delay identification scheme of nonlinear systems; meanwhile, points out the impropriety of NARMA model correction strategy for time-delay system^. The neural networks predictive control of time-delay system is taken as an example to present the correct NARMA model correction methods. Simulation results verify that the advanced correction methods can obtain good control performance and anti-disturbance capability.
identification / NARMA model / neural network / predictive control
/
〈 |
|
〉 |