
双曲型缓坡方程的数值求解
唐军、沈永明、邱大洪
Numerical Simulation of the Hyperbolic Mild Slope Equation
Tang Jun、Shen Yongming、Qiu Dahong
双曲型缓坡方程是研究波浪在近岸缓坡区域传播变形的一种有效波浪数学模型。对Madsen和Larsen 提出的双曲型缓坡方程进行了数值模拟,数值模拟中采用时间层同步空间层交错的有限差分格式对双曲型缓坡 方程进行数值离散,并结合两个典型算例对所采用的数值模型进行验证。数值计算的结果表明,该数值模型可 有效地应用于双曲型缓坡方程的数值求解。
The hyperbolic mild slope equation has been widely used as an effective mathematic model to simulate the propagation of water waves in coastal zones. In this paper, the grid system that collocated in time and staged in space has been used to discretize the hyperbolic mild slope equation and two examples have been used to validate the numerical model. The numerical results show that the numerical model used in the paper can be effectively used in the numerical simulation of the hyperbolic mild slope equation.
wave model / hyperbolic mild slope equation / numerical simulation
/
〈 |
|
〉 |