
人工神经网络在弹体侵彻混凝土深度中的应用
李建光1、李永池1、王玉岚2
Penetration Depth of Projectiles Into Concrete Using Artificial Neural Network
Li Jianguang1、Li Yongchi1、Wang Yulan2
针对弹体对混凝土材料侵彻深度问题,通过量纲分析和神经网络理论,建立了弹体侵彻深度h网络输出量与弹体长度lp、弹的长径比 lp/d、弹体形状系数ψ、弹体与混凝土的比强度σyt/σyp、弹体与混凝土的密度比ρp/ρt等13个网络输入量之间的非线性映射关系。并采用 RBF网络模型,通过Forrestal等文献的试验样本对网络模型训练,获得了弹体对混凝土材料侵彻深度的网络模型,输出结果满意。
In this article, nonlinear mapping relation between input of 13 variables of lp and σyt/σyp etc. , and output of penetration depth is established by dimensional analysis and theory of artificial neural networks for problem of penetration depth of projectiles into concrete. Moreover, a satisfied output about penetration depth from RBF neural network is gotten by a group of input sets and corresponding output sets, which comes from M. J. Forrestal 's document.
神经网络 / 量纲分析 / 侵彻混凝土深度 / 非线性映射关系 / RBF网络
neural networks / dimensional analysis / penetration depth of projectiles into concrete / nonlinear mapping relation / RBF neural networks
/
〈 |
|
〉 |