基于RBF神经网络算法的连拱隧道围岩变形预测方法研究

肖智旺1、钟登华1,2

中国工程科学 ›› 2008, Vol. 10 ›› Issue (7) : 77-81.

PDF(719 KB)
PDF(719 KB)
中国工程科学 ›› 2008, Vol. 10 ›› Issue (7) : 77-81.

基于RBF神经网络算法的连拱隧道围岩变形预测方法研究

  • 肖智旺1、钟登华1,2

作者信息 +

RBF-ANN-Based forecast method of transmutation of wall rock on multi-arch tunne

  • Xiao Zhiwang1,2、Zhong Denghua1

Author information +
History +

摘要

利用径向基函数前馈式神经网络的特性,构建了连拱隧洞围岩变形的预测模型,并利用Matlab工具对模型进行求解。最后的工程实例对文章的方法进行了检验,其结果表明,此方法具有求解速度快,结果更为优化、预测效果更好等优点。

Abstract

The key of forecasting transmutation of wall rock correctly is to construct the reasonable mathematics model of time-distance curve from measuring data when distorting, which is hard to describe accurately with traditional method of recursive analysis. According to the characteristics of feed forward neural network of radial basis function to construct the forecast model of deformation of wall rock in multi-arch tunnel and cllso uses Matlab tool to solve the optimal problem. The engineering case at the end of this paper validates the method. For its fast solving the problem,more optimal results,and better forecasting effects,this method shows its advantages and feasibility.

关键词

连拱隧洞 / 围岩变形 / 变形预测 / 径向基函数(RBF) / 神经网络

Keywords

multi-arch tunnel / deformation of wall rock / deformation forecast / radial basis function (RBF) / artificial neural network (ANN)

引用本文

导出引用
肖智旺,钟登华. 基于RBF神经网络算法的连拱隧道围岩变形预测方法研究. 中国工程科学. 2008, 10(7): 77-81

参考文献

PDF(719 KB)

Accesses

Citation

Detail

段落导航
相关文章

/