
基于GA-ANFIS的边坡稳定性评价
Evaluation of slope stability based on GA-ANFIS
Lin Xianzhi1、Xue Tao2、Yu Peng2、Chen Qing2
自适应神经模糊推理系统将模糊推理的可解释性和神经网络的自适应、自学习的能力结合起来,克服了边坡岩体的不确定性问题带给边坡稳定性分析的巨大困难,同时针对模糊推理系统内部参数设定的合理性问题,建立了基于遗传算法的自适应模糊推理评判模型。结果表明,GA-ANFIS评判模型结果与现场监测情况吻合,从而使其成为边坡稳定性评价的一种有效方法。
Adaptive neuro-fuzzy inference system combines the interpretability of fuzzy reasoning and the ability of adaptability and self-learning of neural network, overcoming the enormous difficulties for slope stability analysis caused by the uncertainty of rock slope. At the same time, for the reasonable of parameter setting in fuzzy inference system, evaluation model of adaptive neuro-fuzzy inference based on genetic algorithm is established. It was shown that the results of GA-ANFIS model are consistent with field condition, which makes it be an effective method for slope stability evaluation.
GA-ANFIS模型 / 评价指标 / 不确定性 / 边坡稳定性评价
GA-ANFIS model / evaluation index / uncertainty / slope stability evaluation
/
〈 |
|
〉 |