
基于蛙跳思想的量子编码遗传算法
Quantum coding genetic algorithm based on frog leaping
Xu Bo1,2、Peng Zhiping1,2、Yu Jianping3、Ke Wende1,2
量子门旋转相位、变异概率大小的确定,是目前制约量子遗传算法效率的两个主要问题。本文提出一种基于蛙跳思想的量子编码遗传算法(QRGA),该算法采用自适应的方式对量子旋转门旋转角进行调整,并基于模糊逻辑将蛙跳的步长进行量化以指导变异概率调整,保证进化的方向性和提高算法效率,对比实验结果表明算法可以避免陷入局部最优解,并能快速收敛到全局最优解,在运行时间和解的性能上都取得了较好的效果。
The determinations of the rotation phase of quantum gates and mutation probability are the two main issues that restrict the efficiency of quantum genetic algorithm. This paper presents a quantum real coding genetic algorithm(QRGA). QRGA used an adaptive means to adjust the direction and the size of the rotation angle of quantum rotation gate. In order to ensure the direction of evolution and population diversity,the mutation probability is guided based on the step of frog leaping algorithm which quantified by fuzzy logic. Comparative experimental results show that the algorithm can avoid falling into part optimal solution and astringe to the global optimum solution quickly,which has achieved good results in the running time and performance of the solution.
quantum encoding / quantum genetic algorithm / frog leaping algorithm / swarm intelligence
/
〈 |
|
〉 |