Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 3 doi: 10.1016/j.eng.2019.01.008

First-Principles Methods in the Investigation of the Chemical and Transport Properties of Materials under Extreme Conditions

a Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
b Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

Received: 2018-06-30 Revised: 2018-08-23 Accepted: 2019-01-16 Available online: 2019-03-28

Next Previous

Abstract

Earth is a dynamic system. The thermodynamics conditions of Earth vary drastically depending on the depth, ranging from ambient temperature and pressure at the surface to 360 GPa and 6600 K at the core. Consequently, the physical and chemical properties of Earth's constituents (e.g., silicate and carbonate minerals) are strongly affected by their immediate environment. In the past 30 years, there has been a tremendous amount of progress in both experimental techniques and theoretical modeling methods for material characterization under extreme conditions. These advancements have elevated our understanding of the properties of minerals, which is essential in order to achieve full comprehension of the formation of this planet and the origin of life on it. This article reviews recent computational techniques for predicting the behavior of materials under extreme conditions. This survey is limited to the application of the first-principles molecular dynamics (FPMD) method to the investigation of chemical and thermodynamic transport processes relevant to Earth Science.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

References

[ 1 ] Atlas Ovscura [Internet]. Kola superdeep borehole. [cited 2018 Aug 23], Available from: https://www.atlasobscura.com/places/kola-superdeep-borehole.

[ 2 ] Williamson ED, Adams LH. Density distribution in the Earth. J Wash Acad Sci 1923;13:413–28. link1

[ 3 ] Price GD, editor. Treatise on geophysics: mineral physics. Amsterdam: Elsevier; 2015. link1

[ 4 ] Pauling L. The nature of the chemical bond. 3rd ed. Ithaca: Cornell University Press; 1960. link1

[ 5 ] O’Keeffe M, Navrotsky A, editors. Structure and bonding in crystals, vol. 2. Cambridge: Academic Press; 1981. link1

[ 6 ] D’Ariano GM, Chiribella G, Perinotti P. Quantum theory from first principles: an informational approach. Cambridge: Cambridge University Press; 2017. link1

[ 7 ] Cohen ML, Louie SG. Fundamental of condensed matter physics. Cambridge: Cambridge University Press; 2016. link1

[ 8 ] McQuarrie DA. Statistical mechanics. Sausalito: University Science Book; 2000. link1

[ 9 ] Verlet L. Computer ‘‘experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones Molecule. Phys Rev 1967;159(1):98–103. link1

[10] Verlet L. Computer, ‘‘experiments” on classical fluids. II. Equilibrium correlation functions. Phys Rev 1968;165(1):201–14. link1

[11] Levesque D, Verlet L. Molecular dynamics calculations of transport coefficients. Mol Phys 1987;61(1):143–59. link1

[12] Ciccotti G, editor. Molecular-dynamics simulation of statistical-mechanical systems. North-Holland: Amsterdam; 1986. p. 424–76. link1

[13] Van Beest BWH, Kramer GJ, van Santen R. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 1990;64 (16):1955–8. link1

[14] Tsuneyuki S, Tsukada M, Aoki H, Matsui Y. First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 1988;61 (7):869–72. link1

[15] Tse JS, Klug DD. The structure and dynamics of silica polymorphs using a twobody effective potential. J Chem Phys 1991;95(12):9176–85. link1

[16] Vocˇadlo L, Patel A, Price GD. Molecular dynamics: some recent developments in classical and quantum mechanical simulation of minerals. Mineral Mag 1995;59(397):597–605. link1

[17] Martin RM. Electronic structure: basic theory and practical methods. Cambridge: Cambridge University Press; 2004. link1

[18] Hohenberg P, Kohn W. Homogeneous electron gas. Phys Rev 1964;136 (3B):864–71. link1

[19] Sham LJ, Kohn W. One-particle properties of an inhomogeneous interacting electron gas. Phys Rev 1966;145(2):561–6. link1

[20] Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett 1980;45(7):566–9. link1

[21] Perdew JP, Schmidt K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 2001;577:1–19. link1

[22] Sun J, Ruzsinszky A, Perdew JP. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett 2015;115(3):036402. link1

[23] Peng H, Yang Z, Perdew JP, Sun J. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys Rev X 2016;6 (4):041005. link1

[24] Feynman RP. Forces in molecules. Phys Rev 1939;56(4):340–2. link1

[25] Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 1992;64(4):1045–97. link1

[26] Marx D, Hutter J. Ab initio molecular dynamics. Cambridge: Cambridge University Press; 2009. link1

[27] Tuckerman ME. Statistical mechanics: theory and molecular simulation. Oxford: Oxford University Press; 2010. link1

[28] Ladd AJC, Moran B, Hoover WG. Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys Rev B Condens Matter 1986;34(8):5058–64. link1

[29] Du X, Tse JS. Oxygen packing fraction and the structure of silicon and germanium oxide glasses. J Phys Chem B 2017;121(47):10726–32. link1

[30] Du X, Wang Z, Wang H, Iitaka T, Pan Y, Wang H, et al. Structures and stability of iron halides at the Earth’s mantle and core pressures: implication for the missing halogen paradox. ACS Earth Space Chem 2018;2(7):711–9. link1

[31] Yong X, Tse JS, Chen J. Mechanism of chemical reactions between SiO2 and CO2 under mantle conditions. ACS Earth Space Chem 2018;2(6):548–55. link1

[32] Futera Z, Yong X, Pan Y, Tse JS, English NJ. Formation and properties of water from quartz and hydrogen at high pressure and temperature. Earth Planet Sci Lett 2017;461:54–60. link1

[33] Du X, Wu M, Tse JS, Pan Y. Structures and transport properties of CaCO3 melts under Earth’s mantle conditions. ACS Earth Space Chem 2018;2(1):1–8. link1

[34] Tse JS, English NJ, Yin K, Iitaka T. Thermal conductivity of solids from firstprinciples molecular dynamics calculations. J Phys Chem C 2018;122 (20):10682–90. link1

[35] Zeidler A, Salmon PS, Skinner LB. Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions. Proc Natl Acad Sci USA 2014;111(28):10045–8. link1

[36] Wu M, Liang Y, Jiang JZ, Tse JS. Structure and properties of dense silica glass. Sci Rep 2012;2:398. link1

[37] Gibbs GV, Wang D, Hin C, Ross NL, Cox DF, Crawford TD, et al. Properties of atoms under pressure: bonded interactions of the atoms in three perovskites. J Chem Phys 2012;137(16):164313. link1

[38] Bader RFW. Atoms in molecules: a quantum theory. New York: Oxford University Press; 1990. link1

[39] Wu M, Tse JS, Wang SY, Wang CZ, Jiang JZ. Origin of pressure-induced crystallization of Ce75Al25 metallic glass. Nat Commun 2015;6:6493. link1

[40] Oganov AR. Modern methods of crystal structure prediction. Hoboken: WileyVCH; 2011. link1

[41] Zhang L, Wang Y, Lv J, Ma Y. Materials discovery at high pressures. Nat Rev Mater 2017;2(4):17005. link1

[42] Wang Y, Lv J, Zhu L, Ma Y. Crystal structure prediction via particle-swarm optimization. Phys Rev B Condens Matter Mater Phys 2010;82(9):094116. link1

[43] Santoro M, Gorelli F, Haines J, Cambon O, Levelut C, Garbarino G. Silicon carbonate phase formed from carbon dioxide and silica under pressure. Proc Natl Acad Sci USA 2011;108(19):7689–92. link1

[44] Woodward RB, Hoffman R. The conservation of orbital symmetry. Cambridge: Academic Press; 1971. link1

[45] Shinozaki A, Kagi H, Noguchi N, Hirai H, Ohfuji H, Okada T, et al. Formation of SiH4 and H2O by the dissolution of quartz in H2 fluid under high pressure temperature. Am Mineral 2014;99(7):1265–9. link1

[46] Van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 2001;105(41):9396–409. link1

[47] Van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA. ReaxFFsio reactive force field for silicon and silicon oxide systems. J Phys Chem A 2003;107(19):3803–11. link1

[48] Schwegler E, Galli G, Gygi F, Hood RQ. Dissociation of water under pressure. Phys Rev Lett 2001;87(26):265501. link1

[49] Kono Y, Kenney-Benson C, Hummer D, Ohfuji H, Park C, Shen G, et al. Ultralow viscosity of carbonate melts at high pressures. Nat Commun 2014;5(1):5091. link1

[50] Stackhouse S, Stixrude L. Theoretical methods for calculating the lattice thermal conductivity of minerals. Rev Mineral Geochem 2010;71 (1):253–69. link1

[51] Marcolongo A, Umari P, Baroni S. Microscopic theory and quantum simulation of atomic heat transport. Nat Phys 2016;12(1):80–4. link1

[52] Kinaci A, Haskins JB, Çag˘ın T. On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics. J Chem Phys 2012;137 (1):014106. link1

[53] Tang X, Dong J. Lattice thermal conductivity of MgO at conditions of Earth’s interior. Proc Natl Acad Sci USA 2010;107(10):4539–43. link1

[54] Dalton DA, Hsieh WP, Hohensee GT, Cahill DG, Goncharov AF. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci Rep 2013;3(1):2400. link1

[55] Imada S, Ohta K, Yagi T, Hirose K, Yoshida H, Nagahara H. Measurements of lattice thermal conductivity of MgO to core mantle boundary pressures. Geophys Res Lett 2014;41(13):4542–7. link1

[56] Reissland JA. The physics of phonon. Hoboken: Wiley; 1973. link1

[57] Speziale S, Zha CS, Duffy TS, Hemley RJ, Mao HK. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure– volume–temperature equation of state. J Geophys Res 2001;106(B1):515–28. link1

[58] Hu Y, Wu Z, Dera PK, Bina CR. Thermodynamic and elastic properties of pyrope at high pressure and high temperature by first-principles calculations. J Geophys Res Solid Earth 2016;121(9):6462–76. link1

[59] Martorell B, Vocadlo L, Brodholt J, Wood IG. Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions. Science 2013;342 (6157):466–8. link1

[60] Parrinello M, Rahman A. Strain fluctuations and elastic constants. J Chem Phys 1982;76(5):2662–6. link1

[61] Sprik M, Impey RW, Klein ML. Second-order elastic constants for the LennardJones solid. Phys Rev B Condens Matter 1984;29(8):4368–74. link1

[62] Tse JS, Klug DD. Mechanical instability of a-quartz: a molecular dynamics study. Phys Rev Lett 1991;67(25):3559–62. link1

Related Research