Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 16, Issue 9 doi: 10.1016/j.eng.2020.06.033

Building a Highly Stable Ultrathin Nanoporous Layer Assisted by Glucose for Desalination

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage & State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
b MOE Key Laboratory of Materials Processing and Molding & National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China

Received:2020-03-10 Revised:2021-05-21 Accepted: 2021-06-08 Available online:2022-07-04

Next Previous


Although nanoporous membranes are of great interest in desalination, it is still challenging to construct highly permeable nanoporous membranes with excellent rejections for an efficient desalination process. In this work, highly permeable nanoporous membranes were built from renewable resources, assisted by the versatile functions of glucose and dopamine, with coupling reactive groups via interfacial reaction with 1,3,5-benzenetricarbonyl trichloride (TMC). The small molecules (0.66 nm) of glucose, which have high hydrophilicity, can diffuse into the membrane for an effective reaction to ensure structural integration. Our novel ultrathin (~44 nm) nanofiltration (NF) membrane exhibits ultra-high Na2SO4 flux and excellent rejection of Na2SO4 (66.5 L∙m−2∙h−1, 97.3%) and MgSO4 (63.0 L∙m−2∙h−1, 92.1%) under a pressure of 5 bar (1 bar = 105 Pa) which is much superior to the performance of natural-product NF membranes. The membrane demonstrates excellent long-term stability, as well as tremendous acid-base and alkali-base stability and high anti-pollution capacity. The designed membrane materials and architecture open a new door to biopolymer-based separation membranes beyond existing membrane materials.


Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9


[1]  Wang Z, Wang Z, Lin S, Jin H, Gao S, Zhu Y, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat Commun 2018;9(1):2004. link1

[2]  Jimenez-Solomon MF, Song Q, Jelfs KE, Munoz-Ibanez M, Livingston AG. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat Mater 2016;15(7):760–7. link1

[3]  Tan Z, Chen S, Peng X, Zhang L, Gao C. Polyamide membranes with nanoscale Turing structures for water purification. Science 2018;360(6388):518–21. link1

[4]  Thakur VK, Voicu SI. Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 2016;146:148–65. link1

[5]  Shen L, Cheng C, Yu X, Yang Y, Wang X, Zhu M, et al. Low pressure UV-cured CS–PEO–PTEGDMA/PAN thin film nanofibrous composite nanofiltration membranes for anionic dye separation. J Mater Chem A 2016;4(40):15575–88. link1

[6]  Puspasari T, Pradeep N, Peinemann KV. Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection. J Membr Sci 2015;491:132–7. link1

[7]  Miao J, Lin H, Wang W, Zhang LC. Amphoteric composite membranes for nanofiltration prepared from sulfated chitosan crosslinked with hexamethylene diisocyanate. Chem Eng J 2013;234:132–9. link1

[8]  Guo J, Zhang Q, Cai Z, Zhao K. Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane. Separ Purif Tech 2016;161:69–79. link1

[9]  Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 2014;114(9):5057–115. link1

[10]  Zhao J, Su Y, He X, Zhao X, Li Y, Zhang R, et al. Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. J Membr Sci 2014;465:41–8. link1

[11]  Li M, Xu J, Chang CY, Feng C, Zhang L, Tang Y, et al. Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking. J Membr Sci 2014;459:62–71. link1

[12]  Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007;318(5849):426–30. link1

[13]  Li Y, Su Y, Zhao X, He X, Zhang R, Zhao J, et al. Antifouling, high-flux nanofiltration membranes enabled by dual functional polydopamine. ACS Appl Mater Interfaces 2014;6(8):5548–57. link1

[14]  Wang ZX, Lau CH, Zhang NQ, Bai YP, Shao L. Mussel-inspired tailoring of membrane wettability for harsh water treatment. J Mater Chem A 2015;3 (6):2650–7. link1

[15]  Zhang YQ, Ma J, Shao L. Ultra-thin trinity coating enabled by competitive reactions for unparalleled molecular separation. J Mater Chem A 2020;8 (10):5078–85. link1

[16]  Xu YC, Cheng XQ, Long J, Shao L. A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations. J Membr Sci 2016;497:77–89. link1

[17]  Zhang N, Jiang B, Zhang L, Huang Z, Sun Y, Zong Y, et al. Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation. Chem Eng J 2019;359:1442–52. link1

[18]  Zhang Y, Sun H, Sadam H, Liu Y, Shao L. Supramolecular chemistry assisted construction of ultra-stable solvent-resistant membranes for angstrom-sized molecular separation. Chem Eng J 2019;371:535–43. link1

[19]  Zhang T, Fu RY, Wang KP, Gao YW, Li HR, Wang XM, et al. Effect of synthesis conditions on the non-uniformity of nanofiltration membrane pore size distribution. J Membr Sci 2022;647:120304. link1

[20]  Otero JA, Mazarrasa O, Villasante J, Silva V, Prádanos P, Calvo JI, et al. Three independent ways to obtain information on pore size distributions of nanofiltration membranes. J Membr Sci 2008;309(1–2):17–27. link1

[21]  Tang A, Feng W, Fang C, Li J, Yang X, Zhu L. Polyarylester thin films with narrowed pore size distribution via metal–phenolic network modulated interfacial polymerization for precise separation. J Membr Sci 2022;646:120263. link1

[22]  Liu Y, Gao J, Ge Y, Yu S, Liu M, Gao C. A combined interfacial polymerization and in-situ sol-gel strategy to construct composite nanofiltration membrane with improved pore size distribution and anti-protein-fouling property. J Membr Sci 2021;623:119097. link1

[23]  Cao X, Luo J, Woodley JM, Wan Y. Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor. Chem Eng J 2018;336:315–24. link1

[24]  Wang T, Qiblawey H, Sivaniah E, Mohammadian A. Novel methodology for facile fabrication of nanofiltration membranes based on nucleophilic nature of polydopamine. J Membr Sci 2016;511:65–75. link1

[25]  Li W, Bian C, Fu C, Zhou A, Shi C, Zhang J. A poly(amide-co-ester) nanofiltration membrane using monomers of glucose and trimesoyl chloride. J Membr Sci 2016;504:185–95. link1

[26]  Amini M, Arami M, Mahmoodi NM, Akbari A. Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination 2011;267 (1):107–13. link1

[27]  Hong G, Shen L, Wang M, Yang Y, Wang X, Zhu M, et al. Nanofibrous polydopamine complex membranes for adsorption of lanthanum (III) ions. Chem Eng J 2014;244:307–16. link1

[28]  Kwon YN, Hong S, Choi H, Tak T. Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement. J Membr Sci 2012;415–416:192–8. link1

[29]  Cheng XQ, Zhang C, Wang ZX, Shao L. Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification. J Membr Sci 2016;499:326–34. link1

[30]  Elizalde-González MP, García-Díaz LE. Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chem Eng J 2010;163(1–2):55–61. link1

[31]  Gevers LEM, Meyen G, De Smet K, Van De Velde P, Du Prez F, Vankelecom IFJ, et al. Physico-chemical interpretation of the SRNF transport mechanism for solutes through dense silicone membranes. J Membr Sci 2006;274(1– 2):173–82. link1

[32]  Thong Z, Han G, Cui Y, Gao J, Chung TS, Chan SY, et al. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal. Environ Sci Technol 2014;48(23):13880–7. link1

[33]  Wu D, Yu S, Lawless D, Feng X. Thin film composite nanofiltration membranes fabricated from polymeric amine polyethylenimine imbedded with monomeric amine piperazine for enhanced salt separations. React Funct Polym 2015;86:168–83. link1

[34]  Wu C, Liu S, Wang Z, Zhang J, Wang X, Lu X, et al. Nanofiltration membranes with dually charged composite layer exhibiting super-high multivalent-salt rejection. J Membr Sci 2016;517:64–72. link1

[35]  Fan H, Gu J, Meng H, Knebel A, Caro J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew Chem Int Ed Engl 2018;57(15):4083–7. link1

[36]  Chen H, Wu C, Jia Y, Wang X, Lu X. Comparison of three membrane distillation configurations and seawater desalination by vacuum membrane distillation. Desalination Water Treat 2011;28(1–3):321–7. link1

[37]  Du Y, Qiu WZ, Lv Y, Wu J, Xu ZK. Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry. ACS Appl Mater Interfaces 2016;8(43):29696–704. link1

[38]  Han J, Gao X, Liu Y, Wang H, Chen Y. Distributions and transport of typical contaminants in different urban stormwater runoff under the effect of drainage systems. Desalination Water Treat 2014;52(7–9):1455–61. link1

[39]  Wang J, Gao X, Wang J, Wei Y, Li Z, Gao C. O-Carboxymethyl-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties. ACS Appl Mater Interfaces 2015;7(7):4381–9. link1

[40]  Wu M, Yuan J, Wu H, Su Y, Yang H, You X, et al. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. J Membr Sci 2019;576:131–41. link1

[41]  Zhang R, Su Y, Zhao X, Li Y, Zhao J, Jiang Z. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). J Membr Sci 2014;470:9–17. link1

[42]  Yang X, Yan L, Ma J, Bai Y, Shao L. Bioadhesion-inspired surface engineering constructing robust, hydrophilic membranes for highly-efficient wastewater remediation. J Membr Sci 2019;591:117353. link1

[43]  Yang X, Yan L, Ran F, Huang Y, Pan D, Bai Y, et al. Mussel-/diatom-inspired silicified membrane for high-efficiency water remediation. J Membr Sci 2020;597:117753. link1

[44]  Li P, Wang Z, Yang LB, Zhao S, Song P, Khan B. A novel loose-NF membrane based on the phosphorylation and cross-linking of polyethyleneimine layer on porous PAN UF membranes. J Membr Sci 2018;555:56–68. link1

[45]  Tekinalp Ö, Alsoy AS. Development of high flux nanofiltration membranes through single bilayer polyethyleneimine/alginate deposition. J Colloid Interface Sci 2019;537:215–27. link1

Related Research