Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 10 doi: 10.1016/j.eng.2021.02.017

A Predictive Instrument for Sensitive and Expedited Measurement of Ultra-Barrier Permeation

a State Key Laboratory of Digital Manufacturing Equipment and Technology & School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
b School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received: 2019-12-16 Revised: 2020-12-17 Accepted: 2021-02-06 Available online: 2021-05-18

Next Previous

Abstract

The reliable operation of flexible display devices poses a significant engineering challenge regarding the metrology of high barriers against water vapor. No reliable results have been reported in the range of 10-6 g∙(m2∙d)-1, and there is no standard ultra-barrier for calibration. To detect trace amount of water vapor permeation through an ultra-barrier with extremely high sensitivity and a greatly reduced test period, a predictive instrument was developed by integrating permeation models into high-sensitivity mass spectrometry measurement based on dynamic accumulation, detection, and evacuation of the permeant. Detection reliability was ensured by means of calibration using a standard polymer sample. After calibration, the lower detection limit for water vapor permeation is in the range of 10-7 g∙(m2∙d)-1, which satisfies the ultra-barrier requirement. Predictive permeation models were developed and evaluated using experimental data so that the steady-state permeation rate can be forecasted from non-steady-state results, thus enabling effective measurement of ultra-barrier permeation within a significantly shorter test period.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science 1995;267(5202):1332–4. link1

[ 2 ] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009;459(7244):234–8. link1

[ 3 ] Lee L, Yoon KH, Jung JW, Yoon HR, Kim H, Kim SH, et al. Ultra gas-proof polymer hybrid thin layer. Nano Lett 2018;18(9):5461–6. link1

[ 4 ] Li Y, Xiong Y, Yang H, Cao K, Chen R. Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition. J Mater Res 2020;35 (7):681–700. link1

[ 5 ] Nam T, Park YJ, Lee H, Oh IK, Ahn JH, Cho SM, et al. A composite layer of atomiclayer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon 2017;116:553–61. link1

[ 6 ] Kwon JH, Jeong EG, Jeon Y, Kim DG, Lee S, Choi KC. Design of highly water resistant, impermeable, and flexible thin-film encapsulation based on inorganic/organic hybrid layers. ACS Appl Mater Interfaces 2019;11 (3):3251–61. link1

[ 7 ] Jing Y, Cao K, Zhou B, Geng S, Wen Y, Shan B, et al. Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals. Chem Mater 2020;32(24):10653–62. link1

[ 8 ] Burrows P, Graff G, Gross M, Martin P, Hall M, Mast E, et al. Gas permeation and lifetime tests on polymer-based barrier coatings. In: Proceedings of SPIE—The International Society for Optical Engineering; 2000 Jul 30–Aug 4; San Diego, CA, USA. Bellingham: SPIE; 2001.

[ 9 ] Lewis JS, Weaver MS. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J Sel Top Quant 2004;10(1):45–57. link1

[10] Kempe MD, Reese MO, Dameron AA. Evaluation of the sensitivity limits of water vapor transmission rate measurements using electrical calcium test. Rev Sci Instrum 2013;84(2):025109. link1

[11] Nakano Y, Yanase T, Nagahama T, Yoshida H, Shimada T. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10–6 g m2 day1 range. Sci Rep 2016;6(1):35408. link1

[12] Kiese S, Kücükpinar E, Reinelt M, Miesbauer O, Ewender J, Langowski HC. A systematic approach for the accurate and rapid measurement of water vapor transmission through ultra-high barrier films. Rev Sci Instrum 2017;88 (2):025108. link1

[13] AQUATRAN model 3: highest sensitivity for the most demanding applications [Internet]. Hertfordshire: RDM Test Equipment; c2021 [cited 2021 Apr 7]. Available from: http://www.rdmtest.com/p/Aquatran-Model-3/. link1

[14] Nörenberg H, Hoshi S, Kondo T. 12.4L: Late-news paper: measurement of water vapor permeation in the range of 10–3–105 g/m2 /day for applications in flexible electronics. SID Int Symp Dig Tech Pap 2012;39(1):147–50. link1

[15] Brinkmann T, Lillepärg J, Notzke H, Pohlmann J, Shishatskiy S, Wind J, et al. Development of CO2 selective poly(ethylene oxide)-based membranes: from laboratory to pilot plant scale. Engineering 2017;3(4):485–93. link1

[16] Zhou C, Zhu G, Xu Y, Yu J, Zhang X, Sheng H. Novel methods by using nonvacuum insulated tubing to extend the lifetime of the tubing. Front Energy 2015;9(2):142–7. link1

[17] Duncan B, Urquhart J, Roberts S. Review of measurement and modelling of permeation and diffusion in polymers. NPL Report. Middlesex: National Physical Laboratory; 2005 Jan. Report No.: DEPC-MPR 012.

[18] ASTM E96/E96M–16: Standard test methods for water vapor transmission of materials. ASTM Standards. West Conshohocken: ASTM International; 2016.

[19] Kim HB, Choi YJ, Hui K, Jang C, Cho YR. Novel method to evaluate moisture permeation of the metal barrier coating on polymer substrate. J Nanosci Nanotechnol 2012;12(4):3511–4. link1

[20] Carcia PF, McLean RS, Reilly MH, Groner MD, George SM. Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl Phys Lett 2006;89(3):031915.

[21] Zhang XD, Lewis JS, Wolter SD, Parker CB, Glass JT. High sensitivity permeation measurement system for ‘‘ultrabarrier” thin films. J Vac Sci Technol A 2007;25 (6):1587–93. link1

[22] Zhang XD, Lewis JS, Parker CB, Glass JT, Wolter SD. Measurement of reactive and condensable gas permeation using a mass spectrometer. J Vac Sci Technol A 2008;26(5):1128–37. link1

[23] Hülsmann P, Philipp D, Köhl M. Measuring temperature-dependent water vapor and gas permeation through high barrier films. Rev Sci Instrum 2009;80 (11):113901. link1

[24] Yoshida H, Ebina T, Arai K, Kobata T, Ishii R, Aizawa T, et al. Development of water vapor transmission rate measuring device using a quadrupole mass spectrometer and standard gas barrier films down to the 10–6 g m2 day1 level. Rev Sci Instrum 2017;88(4):043301. link1

[25] Schubert S, Klumbies H, Müller-Meskamp L, Leo K. Electrical calcium test for moisture barrier evaluation for organic devices. Rev Sci Instrum 2011;82 (9):094101. link1

[26] Crank J. The mathematics of diffusion. 2nd ed. Oxford: Oxford University Press; 1975. link1

[27] Graff GL, Williford RE, Burrows PE. Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation. J Appl Phys 2004;96(4):1840–9.

[28] Bjorck A. Least squares methods. In: Ciarlet PG, Lions GL, editors. Handbook of numerical analysis. Amsterdam: Elsevier Science Publishers B.V.; 1990. p. 465–652.

[29] Martínez-Landeros VH, Gnade BE, Quevedo-López MA, Ramírez-Bon R. Permeation studies on transparent multiple hybrid SiO2-PMMA coatingsAl2O3 barriers on PEN substrates. J Sol-Gel Sci Technol 2011;59(2):345–51. link1

[30] ASTM F1249–20: Standard test method for water vapor transmission rate through plastic film and sheeting using a modulated infrared sensor. ASTM Standards. West Conshohocken: ASTM International; 2013.

[31] Polymer Data Handbook, 2nd ed [book review]. J Am Chem Soc 2009;131 (44):16330.

[32] Balluffi RW, Allen SM, Carter WC. Diffusion in noncrystalline materials. In: Balluffi RW, Allen SM, Carter WC. Kinetics of materials. Hoboken: John Wiley & Sons, Inc.; 2005. p. 229–49.

[33] Roy S, Xu W, Park S, Liechti K. Anomalous moisture diffusion in viscoelastic polymers: modeling and testing. Int J Appl Mech 2000;67(2):391–6. link1

[34] Loh WK, Crocombe AD, Abdel Wahab MM, Ashcroft IA. Modelling anomalous moisture uptake, swelling and thermal characteristics of a rubber toughened epoxy adhesive. Int J Adhes Adhes 2005;25(1):1–12. link1

[35] Wang X, Li Y, Lin J, Shan B, Chen R. Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition. Rev Sci Instrum 2017;88(11):115108. link1

[36] Li Y, Cao K, Xiong Y, Yang H, Zhang Y, Lin Y, et al. Composite encapsulation films with ultrahigh barrier performance for improving the reliability of blue organic light-emitting diodes. Adv Mater Inter 2020;7(13):2000237. link1

[37] Visser RJ, Moro L, Chu X, Chen JR, van de Weijer P, Akkerman HB, et al. Thin film encapsulation. In: Adachi C, Hattori R, Kaji H, Tsujimura T, editors. Handbook of organic light-emitting diodes. New York: Springer; 2018. p. 1–51. link1

[38] Rasool S, Khan N, Jahankhan M, Kim DH, Ho TT, Do LT, et al. Amine-based interfacial engineering in solution-processed organic and perovskite solar cells. ACS Appl Mater Interfaces 2019;11(18):16785–94. link1

Related Research