Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 10 doi: 10.1016/j.eng.2021.05.020

Inhibition of FLT3: A Prototype for Molecular Targeted Therapy in Acute Myeloid Leukemia

a Department of Hematology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
b Department of Hematology and Bone Marrow Transplantation, Rambam Medical Center, Haifa 3109601, Israel
c Technion—Israel Institute of Technology, Haifa 3200003, Israel

Received: 2021-01-10 Revised: 2021-05-18 Accepted: 2021-05-18 Available online: 2021-08-21

Next Previous

Abstract

Modern therapy of acute myeloid leukemia (AML) began in 1973 with the first report of the successful combination of daunorubicin and cytarabine, which led to complete remission in approximately 45% of patients. Accurate AML diagnosis was dependent on morphology, aided initially only by cytochemistry. Unlike acute lymphoblastic leukemia (ALL), immunophenotyping offered little in the diagnosis of AML, at least during the 1970s and 1980s. The advent of reliable cytogenetics changed the entire prognostic outlook of AML. With karyotypic analysis, different groups of AML could be classified and stratified for various therapies. Unique mutational profiling was a major advance in further categorizing AML patients, aided by the immunophenotypic identification of antigenic markers on the cells. All these advances were occurring as the understanding of the importance of the tumor burden—known as minimal residual disease (MRD)—became crucial for the management of AML patients. The efficacy of MRD has rapidly progressed in the past decade, from a specificity of 10−3 with immunophenotyping to 10−4 with polymerase chain reaction (PCR), which is only appropriate for some patients with AML, and finally to 10−5 or even 10−6 cells with the extraordinary sensitivity of next-generation sequencing (NGS). All of these advances have promoted the concept of personalized medicine, which has led to the advent of targeted agents that can accurately be used for specific diagnostic subtypes. Responses can be predicted and measured accurately. Such targeted agents have now become a cornerstone in the management of AML, increasing efficacy and dramatically reducing toxicity. The focus of this review is on one of the most well-studied targeted agents in AML: the FMS-like tyrosine kinase 3 (FLT3) inhibitors, which have impacted the prognostication and therapeutics of AML. This review selectively discusses the FLT3 inhibitors in detail, as a model for the other burgeoning targeted agents that have already been approved, as well as those that are currently in development.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

References

[ 1 ] www.who.int [Internet]. Geneva: World Health Organization; 2014 [cited 2021 Jan 8]. Available from: https://www.who.int/selection_medicines/ committees/expert/20/applications/cancer/en/2014. link1

[ 2 ] seer.cancer.gov [Internet]. Washington, DC: National Cancer Institute; 2017 [cited 2021 Jan 8]. Available from: https://seer.cancer.gov/statfacts/html/ amyl.html. link1

[ 3 ] Rowe JM, Tallman MS. Therapy for acute myeloid leukemia. In: Hoffman R, Furie B, McGlave P, Silberstein LE, Shuttle SJ, Benz EJ, editors. Hematology basic principles and practice. New York: Churchill Livingstone; 2009. p. 965–89. link1

[ 4 ] Yates JW, Wallace HJ Jr, Ellison RR, Holland JF. Cytosine arabinoside (NSC63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep 1973;57(4):485–8. link1

[ 5 ] Murphy S, Gardner FH. Platelet storage at 22 degrees C: role of gas transport across plastic containers in maintenance of viability. Blood 1975;46 (2):209–18. link1

[ 6 ] Walter RB, Kantarjian HM, Huang X, Pierce SA, Sun Z, Gundacker HM, et al. Effect of complete remission and responses less than complete remission on survival in acute myeloid leukemia: a combined Eastern Cooperative Oncology Group, Southwest Oncology Group, and M. D. Anderson Cancer Center Study. J Clin Oncol 2010;28(10):1766–71. link1

[ 7 ] Cassileth PA, Lynch E, Hines JD, Oken MM, Mazza JJ, Bennett JM, et al. Varying intensity of postremission therapy in acute myeloid leukemia. Blood 1992;79 (8):1924–30. link1

[ 8 ] Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood 2005;106(4):1154–63. link1

[ 9 ] Wang ZY, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008;111(5):2505–15. link1

[10] O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003;348 (11):994–1004. link1

[11] DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med 2020;383(7):617–29. link1

[12] Wei AH, Montesinos P, Ivanov V, DiNardo CD, Novak J, Laribi K, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood 2020;135(24):2137–45. link1

[13] Dhillon S. Ivosidenib: first global approval. Drugs 2018;78(14):1509–16. link1

[14] Kim ES. Enasidenib: first global approval. Drugs 2017;77(15):1705–11. link1

[15] Cortes JE, Heidel FH, Hellmann A, Fiedler W, Smith BD, Robak T, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 2019;33(2):379–89. link1

[16] Rowe JM. Will new agents impact survival in AML? Best Pract Res Clin Haematol 2019;32(4):101094. link1

[17] Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997;11 (10):1605–9. link1

[18] Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 2019;33(2):299–312. link1

[19] Thomas CM, Campbell P. FLT3 inhibitors in acute myeloid leukemia: current and future. J Oncol Pharm Pract 2019;25(1):163–71. link1

[20] Wang ES. Beyond midostaurin: which are the most promising FLT3 inhibitors in AML? Best Pract Res Clin Haematol 2019;32(4):101103. link1

[21] Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A. FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia 2020;34 (3):682–96. link1

[22] Kiyoi H, Naoe T. Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. Int J Hematol 2006;83(4):301–8. link1

[23] Drexler HG, Meyer C, Quentmeier H. Effects of FLT3 ligand on proliferation and survival of myeloid leukemia cells. Leuk Lymphoma 1999;33(1–2):83–91. link1

[24] Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: therapeutic paradigm beyond inhibitor development. Cancer Sci 2020;111(2):312–22. link1

[25] Pemmaraju N, Kantarjian H, Ravandi F, Cortes J. FLT3 inhibitors in the treatment of acute myeloid leukemia. Cancer 2011;117(15):3293–304. link1

[26] Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99(12):4326–35. link1

[27] Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001;98(6):1752–9. link1

[28] Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia 2005;19(8):1345–9. link1

[29] Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European Leukemia Net. Blood 2010;115(3):453–74. link1

[30] Stone RM, Manley PW, Larson RA, Capdeville R. Midostaurin: its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis. Blood Adv 2018;2(4):444–53. link1

[31] Smith CC, Wang Qi, Chin CS, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012;485(7397):260–3. link1

[32] Schlenk RF, Kayser S, Bullinger L, Kobbe G, Casper J, Ringhoffer M, et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 2014;124(23):3441–9. link1

[33] Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008;111(5):2776–84. link1

[34] Linch DC, Hills RK, Burnett AK, Khwaja A, Gale RE. Impact of FLT3ITD mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood 2014;124(2):273–6. link1

[35] Pratz KW, Levis M. How I treat FLT3-mutated AML. Blood 2017;129 (5):565–71. link1

[36] Stirewalt DL, Kopecky KJ, Meshinchi S, Engel JH, Pogosova-Agadjanyan EL, Linsley J, et al. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood 2006;107 (9):3724–6. link1

[37] Liu SB, Dong HJ, Bao XB, Qiu QC, Li HZ, Shen HJ, et al. Impact of FLT3-ITD length on prognosis of acute myeloid leukemia. Haematologica 2019;104(1): e9–12. link1

[38] Kayser S, Schlenk RF, Londono MC, Breitenbuecher F, Wittke K, Du J, et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 2009;114(12):2386–92. link1

[39] Rowe JM. Reasons for optimism in the therapy of acute leukemia. Best Pract Res Clin Haematol 2015;28(2–3):69–72. link1

[40] Ho AD, Schetelig J, Bochtler T, Schaich M, Schäfer-Eckart K, Hänel M, et al. Allogeneic stem cell transplantation improves survival in patients with acute myeloid leukemia characterized by a high allelic ratio of mutant FLT3-ITD. Biol Blood Marrow Transplant 2016;22(3):462–9. link1

[41] Pratcorona M, Brunet S, Nomdedéu J, Ribera JM, Tormo M, Duarte R, et al. Favorable outcome of patients with acute myeloid leukemia harboring a lowallelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy. Blood 2013;121(14):2734–8. link1

[42] Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012;366(12):1079–89. link1

[43] Daver N, Cortes J, Ravandi F, Patel KP, Burger JA, Konopleva M, et al. Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood 2015;125(21):3236–45. link1

[44] Smith CC, Lin K, Stecula A, Sali A, Shah NP. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia 2015;29 (12):2390–2. link1

[45] Gescher A. Analogs of staurosporine. Gen Pharmacol 1998;31(5):721–8. link1

[46] Fabbro D, Buchdunger E, Wood J, Mestan J, Hofmann F, Ferrari S, et al. Inhibitors of protein kinases: CGP 41251, a protein kinase inhibitor with potential as an anticancer agent. Pharmacol Ther 1999;82(2–3):293–301. link1

[47] Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002;1(5):433–43. link1

[48] Gallogly MM, Lazarus HM, Cooper BW. Midostaurin: a novel therapeutic agent for patients with FLT3-mutated acute myeloid leukemia and systemic mastocytosis. Ther Adv Hematol 2017;8(9):245–61. link1

[49] Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O, et al. Efficacy and safety of midostaurin in advanced systemic mastocytosis. N Engl J Med 2016;374(26):2530–41. link1

[50] Levis M. Midostaurin approved for FLT3-mutated AML. Blood 2017;129 (26):3403–6. link1

[51] Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005;105 (1):54–60. link1

[52] Fischer T, Stone RM, DeAngelo DJ, Galinsky I, Estey E, Lanza C, et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol 2010;28(28):4339–45. link1

[53] Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 2017;377(5):454–64. link1

[54] Tzogani K, Yu Y, Meulendijks D, Herberts C, Hennik P, Verheijen R, et al. European Medicines Agency review of midostaurin (Rydapt) for the treatment of adult patients with acute myeloid leukaemia and systemic mastocytosis. ESMO Open 2019;4(6):e000606. link1

[55] Larson RA, Mandrekar SJ, Sanford BL, Laumann K, Geyer SM, Bloomfield CD, et al. An analysis of maintenance therapy and post-midostaurin outcomes in the international prospective randomized, placebo-controlled, double-blind trial (CALGB 10603/RATIFY [Alliance]) for newly diagnosed acute myeloid leukemia (AML) patients with FLT3 mutations. Blood 2017;130:145. link1

[56] Schlenk RF, Weber D, Fiedler W, Salih HR, Wulf G, Salwender H, et al. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD. Blood 2019;133(8):840–51. link1

[57] Park I, Mundy-Bosse B, Warner S, Bearss D, Marcucci G, Caligiuri M. The receptor tyrosine kinase Axl is required for resistance to FLT3-targeted therapy in acute myeloid leukemia. Blood 2014;124(21):2350. link1

[58] Pandya BJ, Qi CZ, Yang H, Garnham A, Shah MV, Zeidan AM, editors. Comparison of gilteritinib and salvage chemotherapy in FLT3-mutated acute myeloid leukemia on the number needed to treat for various clinical outcomes: a secondary analysis of the admiral trial. Berlin: Springer; 2020. link1

[59] Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004;103 (10):3669–76. link1

[60] Borthakur G, Kantarjian H, Ravandi F, Zhang W, Konopleva M, Wright JJ, et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica 2011;96(1):62–8. link1

[61] Fiedler W, Serve H, Döhner H, Schwittay M, Ottmann OG, O’Farrell AM, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005;105(3):986–93. link1

[62] Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S, et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011;117 (12):3294–301. link1

[63] Randhawa JK, Kantarjian HM, Borthakur G, Thompson PA, Konopleva M, Daver N, et al. Results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients (Pts) with activating FLT3 mutations. Blood 2014;124:389. link1

[64] Cortes JE, Kantarjian HM, Kadia TM, Borthakur G, Konopleva M, GarciaManero G, et al. Crenolanib besylate, a type I pan-FLT3 inhibitor, to demonstrate clinical activity in multiply relapsed FLT3-ITD and D835 AML. J Clin Oncol 2016;34:7008. link1

[65] Gunawardane RN, Nepomuceno RR, Rooks AM, Hunt JP, Ricono JM, Belli B, et al. Transient exposure to quizartinib mediates sustained inhibition of FLT3 signaling while specifically inducing apoptosis in FLT3-activated leukemia cells. Mol Cancer Ther 2013;12(4):438–47. link1

[66] Wander SA, Levis MJ, Fathi AT. The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Ther Adv Hematol 2014;5 (3):65–77. link1

[67] Cortes J, Perl AE, Döhner H, Kantarjian H, Martinelli G, Kovacsovics T, et al. Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol 2018;19(7):889–903. link1

[68] Cortes JE, Khaled S, Martinelli G, Perl AE, Ganguly S, Russell N, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2019;20(7):984–97. link1

[69] Iyer R, Fetterly G, Lugade A, Thanavala Y. Sorafenib: a clinical and pharmacologic review. Expert Opin Pharmacother 2010;11(11):1943–55. link1

[70] Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG, et al. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 2008;22(4):808–18. link1

[71] Zhang W, Konopleva M, Shi YX, Harris D, Small D, Ling X, et al. Sorafenib (BAY 43–9006) directly targets FLT3-ITD in acute myelogenous leukemia. Blood 2006;108(11):255. link1

[72] Auclair D, Miller D, Yatsula V, Pickett W, Carter C, Chang Y, et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 2007;21 (3):439–45. link1

[73] Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY, et al. Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 2010;28(11):1856–62. link1

[74] Ravandi F, Arana Yi C, Cortes JE, Levis M, Faderl S, Garcia-Manero G, et al. Final report of phase II study of sorafenib, cytarabine and idarubicin for initial therapy in younger patients with acute myeloid leukemia. Leukemia 2014;28 (7):1543–5. link1

[75] Serve H, Krug U, Wagner R, Sauerland MC, Heinecke A, Brunnberg U, et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J Clin Oncol 2013;31(25):3110–8. link1

[76] Röllig C, Serve H, Hüttmann A, Noppeney R, Müller-Tidow C, Krug U, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol 2015;16 (16):1691–9. link1

[77] Röllig C, Serve H, Noppeney R, Hanoun M, Krug U, Baldus CD, et al.; Study Alliance Leukaemia (SAL). Sorafenib or placebo in patients with newly diagnosed acute myeloid leukaemia: long-term follow-up of the randomized controlled SORAML trial. Leukemia. In press.

[78] Wei AH, Kennedy GA, Morris KL, Grigg A, He S, Schwarer A, et al. Results of a phase 2, randomized, double-blind study of sorafenib versus placebo in combination with intensive chemotherapy in previously untreated patients with FLT3-ITD acute myeloid leukemia (ALLG AMLM16). Blood 2020;136 (Suppl 1):36–8. link1

[79] O’Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003;101(9):3597–605. link1

[80] Fiedler W, Kayser S, Kebenko M, Janning M, Krauter J, Schittenhelm M, et al. A phase I/II study of sunitinib and intensive chemotherapy in patients over 60 years of age with acute myeloid leukaemia and activating FLT3 mutations. Br J Haematol 2015;169(5):694–700. link1

[81] Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD, et al. A FLT3- targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002;99(11):3885–91. link1

[82] Knapper S, Russell N, Gilkes A, Hills RK, Gale RE, Cavenagh JD, et al. A randomized assessment of adding the kinase inhibitor lestaurtinib to firstline chemotherapy for FLT3-mutated AML. Blood 2017;129(9):1143–54. link1

[83] Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006;108(10):3262–70. link1

[84] DeZern AE, Sung A, Kim S, Smith BD, Karp JE, Gore SD, et al. Role of allogeneic transplantation for FLT3/ITD acute myeloid leukemia: outcomes from 133 consecutive newly diagnosed patients from a single institution. Biol Blood Marrow Transplant 2011;17(9):1404–9. link1

[85] Labouré G, Dulucq S, Labopin M, Tabrizi R, Guérin E, Pigneux A, et al. Potent graft-versus-leukemia effect after reduced-intensity allogeneic SCT for intermediate-risk AML with FLT3-ITD or wild-type NPM1 and CEBPA without FLT3-ITD. Biol Blood Marrow Transplant 2012;18(12):1845–50. link1

[86] Soiffer RJ. Maintenance therapy for high-risk acute leukemia after allogeneic hematopoietic cell transplantation: wait a minute. Blood Adv 2020;4 (13):3205–8. link1

[87] Levis MJ, Chen YB, Hamadani M, Horowitz MM, Jones RJ. FLT3 inhibitor maintenance after allogeneic transplantation: is a placebo-controlled, randomized trial ethical? J Clin Oncol 2019;37(19):1604–7. link1

[88] DeFilipp Z, Langston AA, Chen Z, Zhang C, Arellano ML, El Rassi F, et al. Does post-transplant maintenance therapy with tyrosine kinase inhibitors improve outcomes of patients with high-risk philadelphia chromosome-positive leukemia? Clin Lymphoma Myeloma Leuk 2016;16 (8):466–71.e1. link1

[89] Warraich Z, Tenneti P, Thai T, Hubben A, Amin H, McBride A, et al. Relapse prevention with tyrosine kinase inhibitors after allogeneic transplantation for Philadelphia chromosome-positive acute lymphoblast leukemia: a systematic review. Biol Blood Marrow Transplant 2020;26(3):e55–64. link1

[90] Pratz KW, Rudek MA, Smith BD, Karp J, Gojo I, Dezern A, et al. ETCTN-8922 Study Team. A prospective study of peritransplant sorafenib for patients with FLT3-ITD acute myeloid leukemia undergoing allogeneic transplantation. Biol Blood Marrow Transplant 2020;26(2):300–6. link1

[91] Chen YB, Li S, Lane AA, Connolly C, Del Rio C, Valles B, et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for FMS-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol Blood Marrow Transplant 2014;20(12):2042–8. link1

[92] Brunner AM, Li S, Fathi AT, Wadleigh M, Ho VT, Collier K, et al. Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission. Br J Haematol 2016;175(3):496–504. link1

[93] Battipaglia G, Ruggeri A, Massoud R, El Cheikh J, Jestin M, Antar A, et al. Efficacy and feasibility of sorafenib as a maintenance agent after allogeneic hematopoietic stem cell transplantation for FMS-like tyrosine kinase 3- mutated acute myeloid leukemia. Cancer 2017;123(15):2867–74. link1

[94] Bazarbachi A, Labopin M, Battipaglia G, Djabali A, Forcade E, Arcese W, et al. Allogeneic stem cell transplantation for FLT3-mutated acute myeloid leukemia: in vivo T-cell depletion and posttransplant sorafenib maintenance improve survival. A retrospective Acute Leukemia Working Party-European Society for Blood and Marrow Transplant study. Clin Hematol Int 2019;1(1):58–74. link1

[95] Antar A, Kharfan-Dabaja MA, Mahfouz R, Bazarbachi A. Sorafenib maintenance appears safe and improves clinical outcomes in FLT3-ITD acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Clin Lymphoma Myeloma Leuk 2015;15(5):298–302. link1

[96] Mathew NR, Baumgartner F, Braun L, O’Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med 2018;24(3):282–91. link1

[97] Burchert A, Bug G, Finke J, Stelljes M, Rollig C, Wäsch R, et al. Sorafenib as maintenance therapy post allogeneic stem cell transplantation for FLT3-ITD positive AML: results from the randomized, double-blind, placebo-controlled multicentre sormain trial. Blood 2018;132(Suppl 1):661. link1

[98] Xuan L, Wang Y, Huang F, Fan Z, Xu Y, Sun J, et al. Sorafenib maintenance in patients with FLT3-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised phase 3 trial. Lancet Oncol 2020;21(9):1201–12. link1

[99] Morin S, Giannotti F, Mamez AC, Masouridi-Levrat S, Simonetta F, Chalandon Y. Real-life experience of sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for FLT3-ITD AML reveals high rates of toxicity-related treatment interruption. Blood 2020;136(Suppl 1):5–6. link1

[100] Bazarbachi A, Bug G, Baron F, Brissot E, Ciceri F, Dalle IA, et al. Clinical practice recommendation on hematopoietic stem cell transplantation for acute myeloid leukemia patients with FLT3-internal tandem duplication: a position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2020;105(6):1507–16. link1

[101] Maziarz RTT, Patnaik MM, Scott BL, Mohan SR, Deol A, Rowley SD, et al. Radius: a phase 2 randomized trial investigating standard of care ± midostaurin after allogeneic stem cell transplant in FLT3-ITD-mutated AML. Blood 2018;132(Suppl 1):662. link1

[102] Assi R, Masri N, Abou Dalle I, El-Cheikh J, Bazarbachi A. Post-transplant maintenance therapy for patients with acute myeloid leukemia: current approaches and the need for more trials. J Blood Med 2021;12:21–32. link1

[103] clinicaltrials.gov [Internet]. Washington, DC: US National Library of Medicine; 2021 [cited 2021 May 10]. Available from: https://clinicaltrials.gov/ct2/show/NCT02997202. link1

[104] Knight T, Luedtke D, Edwards H, Taub JW, Ge Y. A delicate balance—the BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol 2019;162:250–61. link1

[105] Wei A, Strickland SA, Hou JZ, Fiedler W, Lin TL, Walter RB, et al. Venetoclax with low-dose cytarabine induces rapid, deep, and durable responses in previously untreated older adults with AML ineligible for intensive chemotherapy. Blood 2018;132(Suppl 1):284. link1

[106] Ma J, Zhao S, Qiao X, Knight T, Edwards H, Polin L, et al. Inhibition of Bcl-2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid leukemia. Clin Cancer Res 2019;25(22):6815–26. link1

[107] Mali RS, Zhang Q, DeFilippis RA, Cavazos A, Kuruvilla VM, Raman J, et al. Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models. Haematologica 2020;106(4):1034–46. link1

[108] Brinton LT, Zhang Pu, Williams K, Canfield D, Orwick S, Sher S, et al. Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia. J Hematol Oncol 2020;13(1):139. link1

[109] Chyla B, Daver N, Doyle K, McKeegan E, Huang X, Ruvolo V, et al. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia. Am J Hematol 2018;93(8): E202–5. link1

[110] Daver N, Altman JK, Maly J, Levis M, Ritchie E, Litzow M, et al. Efficacy and safety of venetoclax in combination with gilteritinib for relapsed/refractory FLT3-mutated acute myeloid leukemia in the expansion cohort of a phase 1b study. Blood 2020;136(Suppl 1):20–2. link1

[111] Chang E, Ganguly S, Rajkhowa T, Gocke CD, Levis M, Konig H. The combination of FLT3 and DNA methyltransferase inhibition is synergistically cytotoxic to FLT3/ITD acute myeloid leukemia cells. Leukemia 2016;30(5):1025–32. link1

[112] Strati P, Kantarjian H, Ravandi F, Nazha A, Borthakur G, Daver N, et al. Phase I/ II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol 2015;90(4):276–81. link1

[113] Williams CB, Kambhampati S, Fiskus W, Wick Jo, Dutreix C, Ganguly S, et al. Preclinical and phase I results of decitabine in combination with midostaurin (PKC412) for newly diagnosed elderly or relapsed/refractory adult patients with acute myeloid leukemia. Pharmacotherapy 2013;33(12):1341–52. link1

[114] Ravandi F, Alattar ML, Grunwald MR, Rudek MA, Rajkhowa T, Richie MA, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT3 internal tandem duplication mutation. Blood 2013;121 (23):4655–62. link1

[115] Muppidi MR, Griffiths E, Thompson J, Ford L, Freyer C, Wetzler M, et al. Decitabine and sorafenib therapy in patients with FLT3-ITD mutant acute myeloid leukemia is associated with high response rates—a single institute experience. Blood 2014;124(21):5284. link1

[116] Yilmaz M, Kantarjian HM, Muftuoglu M, Kadia TM, Konopleva M, Borthakur G, et al. Quizartinib with decitabine +/- venetoclax is highly active in patients (Pts) with FLT3-ITD mutated (mut) acute myeloid leukemia (AML): clinical report and signaling cytof profiling from a phase IB/II trial. Blood 2020;136:19–20. link1

[117] Dayal N, Opoku-Temeng C, Hernandez DE, Sooreshjani MA, Carter-Cooper BA, Lapidus RG, et al. Dual FLT3/TOPK inhibitor with activity against FLT3-ITD secondary mutations potently inhibits acute myeloid leukemia cell lines. Future Med Chem 2018;10(7):823–35. link1

[118] Ouchida AT, Li Y, Geng J, Najafov A, Ofengeim D, Sun X, et al. Synergistic effect of a novel autophagy inhibitor and guizartinib enhances cancer cell death. Cell Death Dis 2018;9(2):138. link1

[119] Wu M, Li C, Zhu X. FLT3 inhibitors in acute myeloid leukemia. J Hematol Oncol 2018;11(1):133. link1

[120] Wang Y, Xu Y, Li S, Liu J, Xing Y, Xing H, et al. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells. J Hematol Oncol 2018;11(1):60. link1

[121] Jetani H, Garcia-Cadenas I, Nerreter T, Thomas S, Rydzek J, Meijide JB, et al. CAR T-cells targeting FLT3 have potent activity against FLT3–ITD+ AML and act synergistically with the FLT3-inhibitor crenolanib. Leukemia 2018;32 (5):1168–79. link1

[122] Lam SSY, Leung AYH. Overcoming resistance to FLT3 inhibitors in the treatment of FLT3-mutated AML. Int J Mol Sci 2020;21(4):1537. link1

[123] Ghiaur G, Levis M. Mechanisms of resistance to FLT3 inhibitors and the role of the bone marrow microenvironment. Hematol Oncol Clin North Am 2017;31 (4):681–92. link1

[124] Moore AS, Faisal A, de Castro DG, Bavetsias V, Sun C, Atrash B, et al. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia 2012;26(7):1462–70. link1

[125] Man CH, Fung TK, Ho C, Han HH, Chow HC, Ma AC, et al. Sorafenib treatment of FLT3-ITD+ acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood 2012;119(22):5133–43. link1

[126] Zhang H, Savage S, Schultz AR, Bottomly D, White L, Segerdell E, et al. Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nat Commun 2019;10(1):244. link1

[127] Sato T, Yang X, Knapper S, White P, Smith BD, Galkin S, et al. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 2011;117 (12):3286–93. link1

[128] Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood 2007;109(4):1643–52. link1

Related Research