Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 13, Issue 6 doi: 10.1016/j.eng.2021.07.023

Light-Responsive Nanomaterials for Cancer Therapy

a School of Life Sciences, Tianjin University, Tianjin 300072, China
b Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China

Received: 2020-11-17 Revised: 2021-06-19 Accepted: 2021-07-25 Available online: 2021-11-16

Next Previous

Abstract

Due to its unique advantages, which include minimal invasiveness and relative clinical safety, phototherapy is considered to be a promising approach for cancer treatment. However, the treatment efficacy of phototherapy is often restricted by the limited depth of light penetration and the low targeting effect of phototherapeutic agents. The emergence of light-responsive nanomaterials offers a possible approach to achieve enhanced phototherapy potency. This review summarizes the progress in biomedical applications of light-responsive nanomaterials for cancer therapy, which include photothermal therapy (PTT), photodynamic therapy (PDT), light-responsive molecule delivery, and light-controlled combination therapy. Future prospects are also discussed. This review aims to demonstrate the significance of light-responsive nanomaterials in cancer therapy and to provide strategies to expand the applications of phototherapy.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

References

[ 1 ] Xie Z, Fan T, An J, Choi W, Duo Y, Ge Y, et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem Soc Rev 2020;49(22): 8065–87. link1

[ 2 ] Shanmugam V, Selvakumar S, Yeh CS. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 2014;43(17):6254–87. link1

[ 3 ] Gøtzsche PC. Niels Finsen’s treatment for lupus vulgaris. J R Soc Med 2011;104(1):41–2. link1

[ 4 ] Moller KI, Kongshoj B, Philipsen PA, Thomsen VO, Wulf HC. How Finsen’s light cured lupus vulgaris. Photodermatol Photoimmunol Photomed 2005;21(3): 118–24. link1

[ 5 ] Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, et al. Seasonal affective disorder: a description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 1984;41(1):72–80. link1

[ 6 ] Terman M, Terman JS, Quitkin FM, McGrath PJ, Stewart JW, Rafferty B. Light therapy for seasonal affective disorder. A review of efficacy. Neuropsychopharmacology 1989;2(1):1–22. link1

[ 7 ] Perera S, Eisen R, Bhatt M, Bhatnagar N, de Souza R, Thabane L, et al. Light therapy for non-seasonal depression: systematic review and meta-analysis. BJPsych Open 2016;2(2):116–26. link1

[ 8 ] Dodson ER, Zee PC. Therapeutics for circadian rhythm sleep disorders. Sleep Med Clin 2010;5(4):701–15. link1

[ 9 ] Qiu M, Ren WX, Jeong T, Won M, Park GY, Sang DK, et al. Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem Soc Rev 2018;47(15): 5588–601. link1

[10] Lee GH, Moon H, Kim H, Lee GH, Kwon W, Yoo S, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater 2020;5(2):149–65. link1

[11] Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016;45(23): 6597–626. link1

[12] Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, et al. A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemophotodynamic therapy. Angew Chem Int Ed Engl 2018;57(35):11384–8. link1

[13] Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019;48(7): 2053–108. link1

[14] Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials 2020;237:119827. link1

[15] Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013;65(1): 71–9. link1

[16] Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011;63(3):131–5. link1

[17] Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 2017;46(12):3830–52. link1

[18] Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, et al. Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 2010;62(11):1094–124. link1

[19] Deng S, Li X, Liu S, Chen J, Li M, Chew SY, et al. Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Sci Adv 2020;6(29):eabb4005. link1

[20] Nakielski P, Pawłowska S, Rinoldi C, Ziai Y, De Sio L, Urbanek O, et al. Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near-infrared light-driven biomedical applications. ACS Appl Mater Interfaces 2020;12(49):54328–42. link1

[21] Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018;359(6376):679–84. link1

[22] Zheng B, Bai Y, Chen H, Pan H, Ji W, Gong X, et al. Near-infrared light-excited upconverting persistent nanophosphors in vivo for imaging-guided cell therapy. ACS Appl Mater Interfaces 2018;10(23):19514–22. link1

[23] Wan Y, Lu G, Zhang J, Wang Z, Li X, Chen R, et al. A biocompatible free radical nanogenerator with real-time monitoring capability for high performance sequential hypoxic tumor therapy. Adv Funct Mater 2019;29(39):1903436. link1

[24] Zhou F, Wang M, Luo T, Qu J, Chen WR. Photo-activated chemoimmunotherapy for metastatic cancer using a synergistic graphene nanosystem. Biomaterials 2021;265:120421. link1

[25] Hu K, Xie L, Zhang Y, Hanyu M, Yang Z, Nagatsu K, et al. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat Commun 2020;11(1):2778. link1

[26] Lin H, Gao S, Dai C, Chen Yu, Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc 2017;139(45):16235–47. link1

[27] Guglielmelli A, Rosa P, Contardi M, Prato M, Mangino G, Miglietta S, et al. Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine 2021;16(2):121–38. link1

[28] Yang W, Guo W, Le W, Lv G, Zhang F, Shi L, et al. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imagingguided tumor-targeted photothermal therapy. ACS Nano 2016;10(11): 10245–57. link1

[29] Li J, Xie C, Huang J, Jiang Y, Miao Q, Pu K. Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew Chem Int Ed Engl 2018;57(15):3995–8. link1

[30] Zhang L, Wang S, Zhou Y, Wang C, Zhang XZ, Deng H. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew Chem Int Ed Engl 2019;58(40):14213–8. link1

[31] Han R, Zhao M, Wang Z, Liu H, Zhu S, Huang L, et al. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 2020;14(8):9532–44. link1

[32] Luo T, Ni K, Culbert A, Lan G, Li Z, Jiang X, et al. Nanoscale metal–organic frameworks stabilize bacteriochlorins for type I and type II photodynamic therapy. J Am Chem Soc 2020;142(16):7334–9. link1

[33] Xu W, Lee MMS, Nie JJ, Zhang Z, Kwok RTK, Lam JWY, et al. Three-pronged attack by homologous far-red/NIR AIEgens to achieve 1 + 1 + 1 > 3 synergistic enhanced photodynamic therapy. Angew Chem Int Ed Engl 2020;59(24): 9610–6. link1

[34] Yang Y, Wang L, Cao H, Li Q, Li Y, Han M, et al. Photodynamic therapy with liposomes encapsulating photosensitizers with aggregation-induced emission. Nano Lett 2019;19(3):1821–6. link1

[35] Zheng B, Su L, Pan H, Hou B, Zhang Y, Zhou F, et al. NIR-remote selected activation gene expression in living cells by upconverting microrods. Adv Mater 2016;28(4):707–14. link1

[36] Tang L, Yang Z, Zhou Z, Ma Y, Kiesewetter DO, Wang Z, et al. A logic-gated modular nanovesicle enables programmable drug release for on-demand chemotherapy. Theranostics 2019;9(5):1358–68. link1

[37] Lin LS, Yang X, Zhou Z, Yang Z, Jacobson O, Liu Y, et al. Yolk–shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic–plasmonic hybrid theranostic platform. Adv Mater 2017;29(21): 1606681. link1

[38] Kolemen S, Ozdemir T, Lee D, Kim GM, Karatas T, Yoon J, et al. Remotecontrolled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: towards a paradigm change in photodynamic therapy. Angew Chem Int Ed Engl 2016;55(11):3606–10. link1

[39] Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed Engl 2018;57(6):1491–6. link1

[40] Pei P, Sun C, Tao W, Li J, Yang X, Wang J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials 2019;188:74–82. link1

[41] Chen J, Liu L, Motevalli SM, Wu X, Yang XH, Li X, et al. Light-triggered retention and cascaded therapy of albumin-based theranostic nanomedicines to alleviate tumor adaptive treatment tolerance. Adv Funct Mater 2018;28(17): 1707291. link1

[42] Fei Z, Fan Q, Dai H, Zhou X, Xu J, Ma Q, et al. Physiologically triggered injectable red blood cell-based gel for tumor photoablation and enhanced cancer immunotherapy. Biomaterials 2021;271:120724. link1

[43] Lv G, Guo W, Zhang W, Zhang T, Li S, Chen S, et al. Near-infrared emission CuInS/ZnS quantum dots: all-in-one theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy. ACS Nano 2016;10(10):9637–45. link1

[44] Liu H, Lv X, Qian J, Li H, Qian Y, Wang X, et al. Graphitic carbon nitride quantum dots embedded in carbon nanosheets for near-infrared imaging-guided combined photo-chemotherapy. ACS Nano 2020;14(10): 13304–15. link1

[45] Liu Y, Shu G, Li X, Chen H, Zhang B, Pan H, et al. Human HSP70 promoterbased prussian blue nanotheranostics for thermo-controlled gene therapy and synergistic photothermal ablation. Adv Funct Mater 2018;28(32): 1802026. link1

[46] Chu B, Qu Y, He X, Hao Y, Yang C, Yang Y, et al. ROS-responsive camptothecin prodrug nanoparticles for on-demand drug release and combination of chemotherapy and photodynamic therapy. Adv Funct Mater 2020;30(52): 2005918. link1

[47] Wan X, Zhong H, Pan W, Li Y, Chen Y, Li N, et al. Programmed release of dihydroartemisinin for synergistic cancer therapy using CaCO3 mineralized metal–organic framework. Angew Chem Int Ed Engl 2019;58(40):14134–9. link1

[48] Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020;17(11):657–74. link1

[49] Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Organic moleculebased photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev 2018;47(7):2280–97. link1

[50] Gai S, Yang G, Yang P, He F, Lin J, Jin D, et al. Recent advances in functional nanomaterials for light-triggered cancer therapy. Nano Today 2018;19:146–87. link1

[51] Wang S, Tian R, Zhang Xu, Cheng G, Yu P, Chang J, et al. Beyond photo: Xdynamic therapies in fighting cancer. Adv Mater 2021;33(25):2007488. link1

[52] Durantini AM, Greene LE, Lincoln R, Martínez SR, Cosa G. Reactive oxygen species mediated activation of a dormant singlet oxygen photosensitizer: from autocatalytic singlet oxygen amplification to chemicontrolled photodynamic therapy. J Am Chem Soc 2016;138(4):1215–25. link1

[53] Ju E, Dong K, Chen Z, Liu Z, Liu C, Huang Y, et al. Copper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew Chem Int Ed Engl 2016;55(38): 11467–71. link1

[54] Ferris DP, Zhao YL, Khashab NM, Khatib HA, Stoddart JF, Zink JI. Lightoperated mechanized nanoparticles. J Am Chem Soc 2009;131(5):1686–8. link1

[55] Zhang X, Wang S, Cheng G, Yu P, Chang J, Chen X. Cascade drug-release strategy for enhanced anticancer therapy. Matter 2021;4(1):26–53. link1

[56] Cheng G, Zong W, Guo H, Li F, Zhang X, Yu P, et al. Programmed sizechangeable nanotheranostic agents for enhanced imaging-guided chemo/ photodynamic combination therapy and fast elimination. AdvMater 2021;33(21): 2100398. link1

[57] Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev 2014;114(21):10869–939. link1

[58] Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, et al. An injectable selfassembling collagen–gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 2016;28(19):3669–76. link1

[59] Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun 2019;10(1):3349. link1

[60] Renard D, Tian S, Lou M, Neumann O, Yang J, Bayles A, et al. UV-resonant al nanocrystals: synthesis, silica coating, and broadband photothermal response. Nano Lett 2021;21(1):536–42. link1

[61] Ali MRK, Farghali HAM, Wu Y, El-Sayed I, Osman AH, Selim SA, et al. Gold nanorod-assisted photothermal therapy decreases bleeding during breast cancer surgery in dogs and cats. Cancers 2019;11(6):851. link1

[62] Wu Y, Ali MRK, Dong B, Han T, Chen K, Chen J, et al. Gold nanorod photothermal therapy alters cell junctions and actin network in inhibiting cancer cell collective migration. ACS Nano 2018;12(9):9279–90. link1

[63] Yang T, Wang Y, Ke H, Wang Q, Lv X, Wu H, et al. Protein-nanoreactor-assisted synthesis of semiconductor nanocrystals for efficient cancer theranostics. Adv Mater 2016;28(28):5923–30. link1

[64] Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, et al. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/ CT imaging and photothermal ablation therapy. J Am Chem Soc 2010;132(43): 15351–8. link1

[65] Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, et al. Sub-10 nm Fe3O4@Cu2–xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J Am Chem Soc 2013;135(23):8571–7. link1

[66] Dickerson MB, Sandhage KH, Naik RR. Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 2008;108(11):4935–78. link1

[67] Sheng D, Liu T, Deng L, Zhang L, Li X, Xu J, et al. Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 2018;165:1–13. link1

[68] Chen WR, Adams RL, Carubelli R, Nordquist RE. Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett 1997;115(1):25–30. link1

[69] Zhou H, Fan Z, Deng J, Lemons PK, Arhontoulis DC, Bowne WB, et al. Hyaluronidase embedded in nanocarrier peg shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett 2016;16(5): 3268–77. link1

[70] Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA 2019;116(37): 18590–6. link1

[71] Xu Z, Zhang Y, Zhou W, Wang L, Xu G, Ma M, et al. NIR-II-activated biocompatible hollow nanocarbons for cancer photothermal therapy. J Nanobiotechnology 2021;19(1):137. link1

[72] Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remotecontrolled nanotransducers. Nat Med 2012;18(10):1580–5. link1

[73] Li X, Zheng BD, Peng XH, Li SZ, Ying JW, Zhao Y, et al. Phthalocyanines as medicinal photosensitizers: developments in the last five years. Coord Chem Rev 2019;379:147–60. link1

[74] Ethirajan M, Chen Y, Joshi P, Pandey RK. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 2011;40(1): 340–62. link1

[75] Qian C, Yu J, Chen Y, Hu Q, Xiao X, SunW, et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv Mater 2016;28(17): 3313–20. link1

[76] Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90(12):889–905. link1

[77] Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003;3(5):380–7. link1

[78] Li X, Kwon N, Guo T, Liu Z, Yoon J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem Int Ed Engl 2018;57(36):11522–31. link1

[79] Lovell JF, Liu TWB, Chen J, Zheng G. Activatable photosensitizers for imaging and therapy. Chem Rev 2010;110(5):2839–57. link1

[80] Hou Z, Deng K, Wang M, Liu Y, Chang M, Huang S, et al. Hydrogenated titanium oxide decorated upconversion nanoparticles: facile laser modified synthesis and 808 nm near-infrared light triggered phototherapy. Chem Mater 2019;31(3):774–84. link1

[81] Zhang D, Wen L, Huang R, Wang H, Hu X, Xing D. Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials 2018;153:14–26. link1

[82] Silva EF, Serpa C, Da˛browski J, Monteiro CJP, Formosinho SJ, Stochel G, et al. Mechanisms of singlet-oxygen and superoxide-ion generation by porphyrins and bacteriochlorins and their implications in photodynamic therapy. Chemistry 2010;16(30):9273–86. link1

[83] Li X, Lee D, Huang JD, Yoon J. Phthalocyanine-assembled nanodots as photosensitizers for highly efficient type I photoreactions in photodynamic therapy. Angew Chem Int Ed Engl 2018;57(31):9885–90. link1

[84] Londoño-Larrea P, Vanegas JP, Cuaran-Acosta D, Zaballos-García E, PérezPrieto J. Water-soluble naked gold nanoclusters are not luminescent. Chemistry 2017;23(34):8137–41. link1

[85] Lan G, Ni K, Veroneau SS, Feng X, Nash GT, Luo T, et al. Titanium-based nanoscale metal–organic framework for type I photodynamic therapy. J Am Chem Soc 2019;141(10):4204–8. link1

[86] Chen YH, Li GL, Pandey RK. Synthesis of bacteriochlorins and their potential utility in photodynamic therapy (PDT). Curr Org Chem 2004;8(12):1105–34. link1

[87] Huang YY, Balasubramanian T, Yang E, Luo D, Diers JR, Bocian DF, et al. Stable synthetic bacteriochlorins for photodynamic therapy: role of dicyano peripheral groups, central metal substitution (2H, Zn, Pd), and cremophor EL delivery. ChemMedChem 2012;7(12):2155–67. link1

[88] Pandey RK, Constantine S, Tsuchida T, Zheng G, Medforth CJ, Aoudia M, et al. Synthesis, photophysical properties, in vivo photosensitizing efficacy, and human serum albumin binding properties of some novel bacteriochlorins. J Med Chem 1997;40(17):2770–9. link1

[89] Feng G, Liu B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc Chem Res 2018;51(6):1404–14. link1

[90] Cheng G, Wang H, Zhang C, Hao Y, Wang T, Zhang Y, et al. Multifunctional nano-photosensitizer: a carrier-free aggregation-induced emission nanoparticle with efficient photosensitization and pH-responsibility. Chem Eng J 2020;390:124447. link1

[91] Yu G, Cen TY, He Z, Wang SP, Wang Z, Ying XW, et al. Porphyrin nanocageembedded single-molecular nanoparticles for cancer nanotheranostics. Angew Chem Int Ed Engl 2019;58(26):8799–803. link1

[92] Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 2001(18): 1740–1. link1

[93] Würthner F. Aggregation-induced emission (AIE): a historical perspective. Angew Chem Int Ed Engl 2020;59(34):14192–6. link1

[94] Wu MX, Yang YW. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater 2017;29(23):1606134. link1

[95] Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018;9(1): 1410. link1

[96] Zhao L, Liu Y, Chang R, Xing R, Yan X. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy. Adv Funct Mater 2019;29(4):1806877. link1

[97] Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater 2019;4(6):398–414. link1

[98] Fan J, Zhang Z, Wang Y, Lin S, Yang S. Photo-responsive degradable hollow mesoporous organosilica nanoplatforms for drug delivery. J Nanobiotechnology 2020;18(1):91. link1

[99] Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. ‘‘Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J Mater Res Technol 2019;8(1):1497–509. link1

[100] Phua SZF, Xue C, Lim WQ, Yang G, Chen H, Zhang Y, et al. Light-responsive prodrug-based supramolecular nanosystems for site-specific combination therapy of cancer. Chem Mater 2019;31(9):3349–58. link1

[101] Liu J, Yu M, Ning X, Zhou C, Yang S, Zheng J. PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew Chem Int Ed Engl 2013;52(48):12572–6. link1

[102] Yu N, Huang L, Zhou Y, Xue T, Chen Z, Han G. Near-infrared-light activatable nanoparticles for deep-tissue-penetrating wireless optogenetics. Adv Healthc Mater 2019;8(6):1801132. link1

[103] Wang Z, Thang DC, Han Q, Zhao X, Xie X, Wang Z, et al. Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. J Control Release 2020;324:104–23. link1

[104] Zhao W, Zhao Y, Wang Q, Liu T, Sun J, Zhang R. Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives. Small 2019;15(45):1903060. link1

[105] Liu J, Bu W, Pan L, Shi J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew Chem Int Ed Engl 2013;52(16):4375–9. link1

[106] Cheng L, Wang C, Liu Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2013;5(1):23–37. link1

[107] Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D. Advances in highly doped upconversion nanoparticles. Nat Commun 2018;9(1):2415. link1

[108] Zheng B, Wang H, Pan H, Liang C, Ji W, Zhao L, et al. Near-infrared light triggered upconversion optogenetic nanosystem for cancer therapy. ACS Nano 2017;11(12):11898–907. link1

[109] Li S, Zhang W, Xue H, Xing R, Yan X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem Sci 2020;11(33): 8644–56. link1

[110] Niu X, Liu Y, Li X, Wang W, Yuan Z. NIR light-driven Bi2Se3-based nanoreactor with ‘‘three in one” hemin-assisted cascade catalysis for synergetic cancer therapy. Adv Funct Mater 2020;30(52):2006883. link1

[111] Wang M, Rao J, Wang M, Li X, Liu K, Naylor MF, et al. Cancer photoimmunotherapy: from bench to bedside. Theranostics 2021;11(5): 2218–31. link1

[112] Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, et al. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev 2019;119(16):9559–656. link1

[113] Guo W, Sun X, Jacobson O, Yan X, Min K, Srivatsan A, et al. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence. ACS Nano 2015;9(1):488–95. link1

[114] Lin L, Wang S, Deng H, Yang W, Rao L, Tian R, et al. Endogenous labile iron pool-mediated free radical generation for cancer chemodynamic therapy. J Am Chem Soc 2020;142(36):15320–30. link1

[115] Wang S, Yu G, Wang Z, Jacobson O, Lin LS, Yang W, et al. Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angew Chem Int Ed Engl 2019;58(41):14758–63. link1

[116] Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, et al. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/ chemodynamic combination therapy. Adv Sci 2019;6(5):1801986. link1

[117] Lin LS, Huang T, Song J, Ou XY, Wang Z, Deng H, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J Am Chem Soc 2019;141(25):9937–45. link1

[118] Lee Y, Kim DH. Wireless metronomic photodynamic therapy. Nat Biomed Eng 2019;3(1):5–6. link1

[119] Liu Y, Zhen W, Wang Y, Liu J, Jin L, Zhang T, et al. One-dimensional Fe2P acts as a fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew Chem Int Ed Engl 2019;58 (8):2407–12. link1

[120] Feng W, Han X, Wang R, Gao X, Hu P, Yue W, et al. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv Mater 2019;31(5):1805919. link1

[121] Deng Z, Liu S. Controlled drug delivery with nanoassemblies of redoxresponsive prodrug and polyprodrug amphiphiles. J Control Release 2020;326:276–96. link1

Related Research