Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 11, Issue 4 doi: 10.1016/j.eng.2021.08.028

Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite-free and high-rate sodium-ion battery

a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
b School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
d Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received: 2021-01-26 Revised: 2021-08-11 Accepted: 2021-08-31 Available online: 2022-01-25

Next Previous

Abstract

Sodium (Na) metal batteries with a high volumetric energy density that can be operated at high rates are highly desirable. However, an uneven Na-ion migration in bulk Na anodes leads to localized deposition/dissolution of sodium during high-rate plating/stripping behaviors, followed by severe dendrite growth and loose stacking. Herein, we engineer the Na hybrid anode with sodiophilic Na3Bi-penetration to develop the abundant phase-boundary ionic transport channels. Compared to intrinsic Na, the reduced adsorption energy and ion-diffusion barrier on Na3Bi ensure even Na+ nucleation and rapid Na+ migration within the hybrid electrode, leading to uniform deposition and dissolution at high current densities. Furthermore, the bismuthide enables compact Na deposition within the sodiophilic framework during cycling, thus favoring a high volumetric capacity. Consequently, the obtained anode was endowed with a high current density (up to 5 mA∙cm−2), high areal capacity (up to 5 mA·h∙cm−2), and long-term cycling stability (up to 2800 h at 2 mA∙cm−2).

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Armand M, Tarascon JM. Building better batteries. Nature 2008;451 (7179):652–7. link1

[ 2 ] Whittingham MS. Lithium batteries and cathode materials. Chem Rev 2004;104(10):4271–302. link1

[ 3 ] Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater 2012;11(1):19–29. Erratum in: Nat Mater 2012;11(2):172. link1

[ 4 ] Xu T, Gao P, Li P, Xia K, Han N, Deng J, et al. Fast-charging and ultrahighcapacity lithium metal anode enabled by surface alloying. Adv Energy Mater 2020;10(8):1902343. link1

[ 5 ] Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy 2018;3(1):16–21. link1

[ 6 ] Wu Y, Wang W, Ming J, Li M, Xie L, He X, et al. An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery. Adv Funct Mater 2019;29(1):1805978. link1

[ 7 ] Aurbach D, Levi MD, Levi E, Schechter A. Failure and stabilization mechanisms of graphite electrodes. J Phys Chem B 1997;101(12):2195–206. link1

[ 8 ] Zhang Y, Li J, Zhao W, Dou H, Zhao X, Liu Y, et al. Defect-free metal–organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode. Adv Mater. In press.

[ 9 ] Yao Z, Xia X, Xie D, Wang Y, Zhou C, Liu S, et al. Enhancing ultrafast lithium ion storage of Li4Ti5O12 by tailored TiC/C core/shell skeleton plus nitrogen doping. Adv Funct Mater 2018;28(31):1802756. link1

[10] Elango R, Demortière A, De Andrade V, Morcrette M, Seznec V. Thick binderfree electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity. Adv Energy Mater 2018;8 (15):1703031. link1

[11] Yang F, Mousavie SMA, Oh TK, Yang T, Lu Y, Farley C, et al. Sodium–sulfur flow battery for low-cost electrical storage. Adv Energy Mater 2018;8 (11):1701991. link1

[12] Liang F, Qiu X, Zhang Q, Kang Y, Koo A, Hayashi K, et al. A liquid anode for rechargeable sodium–air batteries with low voltage gap and high safety. Nano Energy 2018;49:574–9. link1

[13] Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research path. Energy Environ Sci 2013;6(8):2312–37. link1

[14] Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 2011;21 (20):3859–67. link1

[15] Bai Y, Wang Z, Wu C, Xu R, Wu F, Liu Y, et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl Mater Interfaces 2015;7(9):5598–604. link1

[16] Liu P, Li Y, Hu YS, Li H, Chen L, Huang X. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Phys Chem A 2016;4(34):13046–52. link1

[17] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodiumion batteries. Chem Rev 2014;114(23):11636–82. link1

[18] Sun J, Lee HW, Pasta M, Yuan H, Zheng G, Sun Y, et al. A phosphorene– graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 2015;10(11):980–5. link1

[19] Pan H, Hu YS, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 2013;6 (8):2338–60. link1

[20] Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev 2017;46(12):3529–614. link1

[21] Li Y, Lu Y, Adelhelm P, Titirici MM, Hu YS. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem Soc Rev 2019;48(17):4655–87. link1

[22] Wang A, Hu X, Tang H, Zhang C, Liu S, Yang YW, et al. Processable and moldable sodium–metal anodes. Angew Chem Int Ed 2017;56 (39):11921–6. link1

[23] Zhao Y, Goncharova LV, Lushington A, Sun Q, Yadegari H, Wang B, et al. Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Adv Mater 2017;29(18):1606663. link1

[24] Wang H, Wang C, Matios E, Li W. Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew Chem Int Ed 2018;57(26):7734–7. link1

[25] Guo M, Dou H, Zhao W, Zhao X, Wan B, Wang J, et al. Three dimensional frameworks of super ionic conductor for thermodynamically and dynamically favorable sodium metal anode. Nano Energy 2020;70:104479. link1

[26] Xu Z, Yang J, Zhang T, Sun L, Nuli Y, Wang J, et al. Stable Na metal anode enabled by a reinforced multistructural SEI layer. Adv Funct Mater 2019;29 (27):1901924. link1

[27] Zhang D, Li B, Wang S, Yang S. Simultaneous formation of artificial SEI film and 3D host for stable metallic sodium anodes. ACS Appl Mater Interfaces 2017;9 (46):40265–72. link1

[28] Tang S, Qiu Z, Wang XY, Gu Y, Zhang XG, Wang WW, et al. A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 2018;48:101–6. link1

[29] Luo J, Wang C, Wang H, Hu X, Matios E, Lu X, et al. Pillared mxene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv Funct Mater 2019;29(3):1805946. link1

[30] Yang T, Qian T, Sun Y, Zhong J, Rosei F, Yan C. Mega high utilization of sodium metal anodes enabled by single zinc atom sites. Nano Lett 2019;19 (11):7827–35. link1

[31] Fang Y, Zhang Y, Zhu K, Lian R, Gao Y, Yin J, et al. Lithiophilic three-dimensional porous Ti3C2Tx–rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 2019;13(12):14319–28. link1

[32] Zhu M, Li S, Li B, Gong Y, Du Z, Yang S. Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci Adv 2019;5(4):eaau6264. link1

[33] Xu Y, Wang C, Matios E, Luo J, Hu X, Yue Q, et al. Sodium deposition with a controlled location and orientation for dendrite-free sodium metal batteries. Adv Energy Mater 2020;10(44):2002308. link1

[34] Guo W, Liu S, Guan X, Zhang X, Liu X, Luo J. Mixed ion and electron-conducting scaffolds for high-rate lithium metal anodes. Adv Energy Mater 2019;9 (20):1900193. link1

[35] Jäckle M, Helmbrecht K, Smits M, Stottmeister D, Groß A. Self-diffusion barriers: possible descriptors for dendrite growth in batteries? Energy Environ Sci 2018;11(12):3400–7. link1

[36] Kasemchainan J, Zekoll S, Jolly DS, Ning Z, Hartley GO, Marrow J, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater 2019;18(10):1105–11. link1

[37] Shi F, Pei A, Boyle DT, Xie J, Yu X, Zhang X, et al. Lithium metal stripping beneath the solid electrolyte interphase. Proc Natl Acad Sci USA 2018;115 (34):8529–34. link1

[38] Jäckle M, Groß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J Chem Phys 2014;141(17):174710. link1

[39] O’Reilly DE. Self-diffusion of solid and liquid sodium. J Phys Chem 1974;78 (22):2275–80. link1

[40] Park JH, Choi YS, Byeon YW, Ahn JP, Lee JC. Diffusion kinetics governing the diffusivity and diffusion anisotropy of alloying anodes in Na-ion batteries. Nano Energy 2019;65:104041. link1

[41] Yurkiv V, Gutiérrez-Kolar JS, Unocic RR, Ramsubramanian A, ShahbazianYassar R, Mashayek F. Competitive ion diffusion within grain boundary and grain interiors in polycrystalline electrodes with the inclusion of stress field. J Electrochem Soc 2017;164(12):A2830–9. link1

[42] Lin D, Zhao J, Sun J, Yao H, Liu Y, Yan K, et al. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc Natl Acad Sci USA 2017;114(18):4613–8. link1

[43] Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium– metal anodes. Adv Mater 2018;30(33):1801328. link1

[44] Wan M, Kang S, Wang L, Lee HW, Zheng GW, Cui Y, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahighrate battery anode. Nat Commun 2020;11(1):829. link1

[45] Zheng X, Yang W, Wang Z, Huang L, Geng S, Wen J, et al. Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy 2020;69:104387. link1

[46] Liu S, Deng L, Guo W, Zhang C, Liu X, Luo J. Bulk nanostructured materials design for fracture-resistant lithium metal anodes. Adv Mater 2019;31 (15):1807585. link1

[47] Li S, Fu J, Miao G, Wang S, Zhao W, Wu Z, et al. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv Mater 2021;33(21):2008424. link1

[48] Lu H, Xu B, Shi J, Wu M, Hu Y, Ouyang C. Structural, electronic, sodium diffusion and elastic properties of Na–P alloy anode for Na-ion batteries: insight from first-principles calculations. Mod Phys Lett B 2016;30(32– 33):1650385. link1

[49] Han S, Park J, Lu W, Sastry AM. Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials. J Power Sources 2013;240:155–67. link1

[50] Wang C, Wang L, Li F, Cheng F, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glymebased electrolytes. Adv Mater 2017;29(35):1702212. link1

[51] Lei K, Wang C, Liu L, Luo Y, Mu C, Li F, et al. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed 2018;57(17):4687–91. link1

[52] Yan K, Lu Z, Lee HW, Xiong F, Hsu PC, Li Y, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy 2016;1(3):16010. link1

[53] Fan L, Li S, Liu L, Zhang W, Gao L, Fu Y, et al. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv Energy Mater 2018;8(33):1802350. link1

[54] Li Z, Wu HB, Lou XW. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ Sci 2016;9(10):3061–70. link1

[55] Xiao J, Li Q, Bi Y, Cai M, Dunn B, Glossmann T, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat Energy 2020;5 (8):561–8. link1

[56] Peng Z, Song J, Huai L, Jia H, Xiao B, Zou L, et al. Enhanced stability of Li metal anodes by synergetic control of nucleation and the solid electrolyte interphase. Adv Energy Mater 2019;9(42):1901764. link1

[57] Seh ZW, Sun J, Sun Y, Cui Y. A highly reversible room-temperature sodium metal anode. ACS Cent Sci 2015;1(8):449–55. link1

[58] Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114(23):11503–618. link1

[59] Chi SS, Qi XG, Hu YS, Fan LZ. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv Energy Mater 2018;8(15):1702764. link1

Related Research