Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 21, Issue 2 doi: 10.1016/j.eng.2022.02.016

CO2 High-Temperature Electrolysis Technology Toward Carbon Neutralization in the Chemical Industry

a SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China

b Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

c Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Received: 2021-09-03 Revised: 2021-11-09 Accepted: 2022-02-28 Available online: 2022-09-01

Next Previous

Abstract

The chemical industry is a major carbon emitter in China and must be focused on for China to achieve its goal of carbon neutralization. CO2 high-temperature electrolysis based on solid oxide electrolysis cells (SOECs) is an important technology to achieve China's carbon emission reduction, peak carbon emission, and carbon neutralization goals. Moreover, this technology can realize the recycling utilization of CO2 and thereby contribute to considerable environmental benefits and potential economic benefits. Thus far, a great deal of progress has been made in CO2 high-temperature electrolysis technology at the laboratory stage and pilot stage, although the large-scale industrial application of this technology still requires further development. This review focuses on recent progress in state-of-the-art cell materials for hightemperature CO2 electrolysis, discusses the future research directions of SOEC technologies, and proposes possible SOEC-coupled chemical industry carbon neutralization solutions.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

References

[ 1 ] Zheng Y, Chen Z, Zhang J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels. Electrochem Energy Rev 2021;4(3):508–17. link1

[ 2 ] Zheng Y, Wang J, Yu B, Zhang W, Chen J, Qiao J, et al. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem Soc Rev 2017;46(5):1427–63. link1

[ 3 ] Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016;529(7584):68–71. link1

[ 4 ] Hauch A, Küngas R, Blennow P, Hansen AB, Hansen JB, Mathiesen BV, et al. Recent advances in solid oxide cell technology for electrolysis. Science 2020;370(6513):eaba6118. link1

[ 5 ] Skafte TL, Guan Z, Machala ML, Gopal CB, Monti M, Martinez L, et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates. Nat Energy 2019;4(10):846–55. link1

[ 6 ] Elliott D. A balancing act for renewables. Nat Energ 2016;1(1):15003. link1

[ 7 ] Ebbesen SD, Jensen SH, Hauch A, Mogensen MB. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem Rev 2014;114(21):10697–734. link1

[ 8 ] Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 2004;104(10):4791–844. link1

[ 9 ] Jensen SH, Larsen PH, Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources. Int J Hydrogen Energy 2007;32(15):3253–7. link1

[10] Alenazey F, Alyousef Y, Almisned O, Almutairi G, Ghouse M, Montinaro D, et al. Production of synthesis gas (H2 and CO) by high-temperature coelectrolysis of H2O and CO2. Int J Hydrogen Energy 2015;40(32):10274–80. link1

[11] Zhang W, Yu B. Development status and prospects of hydrogen production by high temperature solid oxide electrolysis. J Electrochem 2020;26(2):212–29. link1

[12] Zheng Y, Zhang W, Li Y, Chen J, Yu B, Wang J, et al. Energy related CO2 conversion and utilization: advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy 2017;40:512–39. link1

[13] Jiang Y, Chen F, Xia C. A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. J Power Sources 2021;493:229713. link1

[14] Chen L, Chen F, Xia C. Direct synthesis of methane from CO2–H2O coelectrolysis in tubular solid oxide electrolysis cells. Energy Environ Sci 2014;7 (12):4018–22. link1

[15] Hartvigsen J, Elangovan S, Elwell J, Larsen D. Oxygen production from Mars atmosphere carbon dioxide using solid oxide electrolysis. ECS Trans 2017;78 (1):2953–63. link1

[16] Hansen JB. Solid oxide electrolysis—a key enabling technology for sustainable energy scenarios. Faraday Discuss 2015;182:9–48. link1

[17] Ebbesen SD, Høgh J, Nielsen KA, Nielsen JU, Mogensen M. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis. Int J Hydrogen Energy 2011;36(13):7363–73. link1

[18] Nguyen VN, Fang Q, Packbier U, Blum L. Long-term tests of a Jülich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes. Int J Hydrogen Energy 2013;38(11):4281–90. link1

[19] Hauch A, Ebbesen SD, Jensen SH, Mogensen M. Solid oxide electrolysis cells: microstructure and degradation of the Ni/yttria-stabilized zirconia electrode. J Electrochem Soc 2008;155(11):B1184–93. link1

[20] Argyle MD, Bartholomew CH. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 2015;5(1):145–269. link1

[21] Papaefthimiou V, Shishkin M, Niakolas DK, Athanasiou M, Law YT, Arrigo R, et al. On the active surface state of nickel–ceria solid oxide fuel cell anodes during methane electrooxidation. Adv Energy Mater 2013;3(6):762–9. link1

[22] Yu Y, Mao B, Geller A, Chang R, Gaskell K, Liu Z, et al. CO2 activation and carbonate intermediates: an operando AP-XPS study of CO2 electrolysis reactions on solid oxide electrochemical cells. Phys Chem Chem Phys 2014;16 (23):11633–9. link1

[23] Neagu D, Oh TS, Miller DN, Ménard H, Bukhari SM, Gamble SR, et al. Nanosocketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat Commun 2015;6(1):8120. link1

[24] Yue W, Li Y, Zheng Y, Wu T, Zhao C, Zhao J, et al. Enhancing coking resistance of Ni/YSZ electrodes: in situ characterization, mechanism research, and surface engineering. Nano Energy 2019;62:64–78. link1

[25] Christensen KO, Chen D, Lødeng R, Holmen A. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl Catal A Gen 2006;314(1):9–22. link1

[26] Chen D, Christensen KO, Ochoa-Fernández E, Yu Z, Tøtdal B, Latorre N, et al. Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J Catal 2005;229(1):82–96. link1

[27] Han JW, Kim C, Park JS, Lee H. Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane. ChemSusChem 2014;7 (2):451–6. link1

[28] Liang M, Yu B, Wen M, Chen J, Xu J, Zhai Y. Preparation of NiO–YSZ composite powder by a combustion method and its application for cathode of SOEC. Int J Hydrogen Energy 2010;35(7):2852–7. link1

[29] Su T, Li Y, Xue S, Xu Z, Zheng M, Xia C. Kinetics of CO2 electrolysis on composite electrodes consisting of Cu and samaria-doped ceria. J Mater Chem A 2019;7(4):1598–606. link1

[30] Kumari N, Haider MA, Tiwari PK, Basu S. Carbon dioxide reduction on the composite of copper and praseodymium-doped ceria electrode in a solid oxide electrolysis cells. Ionics 2019;25(7):3165–77. link1

[31] Kumari N, Tiwari PK, Haider MA, Basu S. Electrochemical performance of infiltrated Cu–GDC and Cu–PDC cathode for CO2 electrolysis in a solid oxide cell. ECS Trans 2017;78(1):3329–37. link1

[32] Wang W, Vohs JM, Gorte RJ. Hydrogen production via CH4 and CO assisted steam electrolysis. Top Catal 2007;46(3–4):380–5. link1

[33] Liu L, Wang Y, Zhou X, Yang Y, Ma C, Li Y, et al. Cu/Ce0.6Mn0.3Fe0.1O2d membrane fuel electrode fabricated by infiltration method for solid oxide electrochemical cells. Electrochim Acta 2017;235:365–73. link1

[34] Cheng CY, Kelsall GH, Kleiminger L. Reduction of CO2 to CO at Cu–ceriagadolinia (CGO) cathode in solid oxide electrolyser. J Appl Electrochem 2013;43(11):1131–44. link1

[35] Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, et al. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat Commun 2017;8(1):14586. link1

[36] Zhou Y, Guan X, Zhou H, Ramadoss K, Adam S, Liu H, et al. Strongly correlated perovskite fuel cells. Nature 2016;534(7606):231–4. link1

[37] Graves C, Ebbesen SD, Jensen SH, Simonsen SB, Mogensen MB. Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nat Mater 2015;14(2):239–44. link1

[38] Li Y, Zhang W, Zheng Y, Chen J, Yu B, Chen Y, et al. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem Soc Rev 2017;46(20):6345–78. link1

[39] Ma Z, Zhou J, Li Y, Liu C, Pu J, Chen X. Developments in CO2 electrolysis of solid oxide electrolysis cell with different cathodes. Fuel Cells 2020;20(6):650–60. link1

[40] Zhang X, Song Y, Wang G, Bao X. Co-electrolysis of CO2 and H2O in hightemperature solid oxide electrolysis cells: recent advance in cathodes. J Energy Chem 2017;26(5):839–53. link1

[41] Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB. Evolution of the electrochemical interface in hightemperature fuel cells and electrolysers. Nat Energy 2016;1(1):15014. link1

[42] Liu S, Liu Q, Luo JL. CO2-to-CO conversion on layered perovskite with in situ exsolved Co–Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells. J Mater Chem A 2016;4(44):17521–8. link1

[43] Yue X, Irvine JTS. (La, Sr)(Cr, Mn)O3/GDC cathode for high temperature steam electrolysis and steam–carbon dioxide co-electrolysis. Solid State Ion 2012;225:131–5. link1

[44] Yue X, Irvine JTS. Modification of LSCM–GDC cathodes to enhance performance for high temperature CO2 electrolysis using solid oxide electrolysis cells (SOECs). J Mater Chem A 2017;5(15):7081–90. link1

[45] Zhang X, Song Y, Guan F, Zhou Y, Lv H, Liu Q, et al. (La0.75Sr0.25)0.95(Cr0.5Mn0.5)-O3d–Ce0.8Gd0.2O1.9 scaffolded composite cathode for high temperature CO2 electroreduction in solid oxide electrolysis cell. J Power Sources 2018;400:104–13. link1

[46] Ma Z, Li Y, Zheng Y, Li W, Chen X, Sun X, et al. La0.75Sr0.25Cr0.5Mn0.5O3d as cathode for electrolysis and co-electrolysis of CO2 and H2O in solid oxide electrolysis cell. Ceram Int 2021;47(16):23350–61. link1

[47] Pidburtnyi M, Zanca B, Coppex C, Jimenez-Villegas S, Thangadurai V. A review on perovskite-type LaFeO3 based electrodes for CO2 reduction in solid oxide electrolysis cells: current understanding of structure–functional property relationships. Chem Mater 2021;33(12):4249–68. link1

[48] Yang Y, Li Y, Jiang Y, Zheng M, Hong T, Wu X, et al. The electrochemical performance and CO2 reduction mechanism on strontium doped lanthanum ferrite fuel electrode in solid oxide electrolysis cell. Electrochim Acta 2018;284:159–67. link1

[49] Zhou Y, Lin L, Song Y, Zhang X, Lv H, Liu Q, et al. Pd single site-anchored perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells. Nano Energy 2020;71:104598. link1

[50] Myung J, Neagu D, Miller DN, Irvine JTS. Switching on electrocatalytic activity in solid oxide cells. Nature 2016;537(7621):528–31. link1

[51] Kwon O, Sengodan S, Kim K, Kim G, Jeong HY, Shin J, et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat Commun 2017;8(1):15967. link1

[52] Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6d cathode for CO2 electrolysis. Adv Mater 2020;32 (6):1906193. link1

[53] Xie K, Zhang J, Xu S, Ding B, Wu G, Xie T, et al. Composite cathode based on redox-reversible NbTi0.5Ni0.5O4 decorated with in situ grown Ni particles for direct carbon dioxide electrolysis. Fuel Cells 2014;14(6):1036–45. link1

[54] Li Y, Xie K, Chen S, Li H, Zhang Y, Wu Y. Efficient carbon dioxide electrolysis based on perovskite cathode enhanced with nickel nanocatalyst. Electrochim Acta 2015;153:325–33. link1

[55] Gan L, Ye L, Tao S, Xie K. Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis. Phys Chem Chem Phys 2016;18(4):3137–43. link1

[56] Gan J, Hou N, Yao T, Fan L, Gan T, Huang Z, et al. A high performing perovskite cathode with in situ exsolved Co nanoparticles for H2O and CO2 solid oxide electrolysis cell. Catal Today 2021;364:89–96. link1

[57] Yang X, Sun W, Ma M, Xu C, Ren R, Qiao J, et al. Achieving highly efficient carbon dioxide electrolysis by in situ construction of the heterostructure. ACS Appl Mater Interfaces 2021;13(17):20060–9. link1

[58] Ye L, Zhang M, Huang P, Guo G, Hong M, Li C, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat Commun 2017;8(1):14785. link1

[59] Wang W, Gan L, Lemmon JP, Chen F, Irvine JTS, Xie K. Enhanced carbon dioxide electrolysis at redox manipulated interfaces. Nat Commun 2019;10 (1):1550. link1

[60] Kyriakou V, Neagu D, Papaioannou EI, Metcalfe IS, van de Sanden MCM, Tsampas MN. Co-electrolysis of H2O and CO2 on exsolved Ni nanoparticles for efficient syngas generation at controllable H2/CO ratios. Appl Catal B 2019;258:117950. link1

[61] Wei H, Xie K, Zhang J, Zhang Y, Wang Y, Qin Y, et al. In situ growth of NixCu1x alloy nanocatalysts on redox-reversible rutile (Nb,Ti)O4 towards hightemperature carbon dioxide electrolysis. Sci Rep 2015;4(1):5156. link1

[62] Zhu J, Zhang W, Li Y, Yue W, Geng G, Yu B. Enhancing CO2 catalytic activation and direct electroreduction on in-situ exsolved Fe/MnOx nanoparticles from (Pr, Ba)2Mn2yFeyO5+d layered perovskites for SOEC cathodes. Appl Catal B 2020;268:118389. link1

[63] Zhu C, Hou S, Hu X, Lu J, Chen F, Xie K. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer. Nat Commun 2019;10(1):1173. link1

[64] Sun YF, Zhang YQ, Chen J, Li JH, Zhu YT, Zeng YM, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent. Nano Lett 2016;16(8):5303–9. link1

[65] Liu S, Liu Q, Luo JL. Highly stable and efficient catalyst with in situ exsolved Fe–Ni alloy nanospheres socketed on an oxygen deficient perovskite for direct CO2 electrolysis. ACS Catal 2016;6(9):6219–28. link1

[66] Zhao C, Li Y, Zhang W, Zheng Y, Lou X, Yu B, et al. Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ Sci 2020;13(1):53–85. link1

[67] Neagu D, Tsekouras G, Miller DN, Ménard H, Irvine JTS. In situ growth of nanoparticles through control of non-stoichiometry. Nat Chem 2013;5 (11):916–23. link1

[68] Zheng Y, Li Y, Wu T, Zhang W, Zhu J, Li Z, et al. Oxygen reduction kinetic enhancements of intermediate-temperature SOFC cathodes with novel Nd0.5Sr0.5CoO3d/Nd0.8Sr1.2CoO4±d heterointerfaces. Nano Energy 2018;51:711–20. link1

[69] Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011;334(6061):1383–5. link1

[70] Chen K, Jiang SP. Review—materials degradation of solid oxide electrolysis cells. J Electrochem Soc 2016;163(11):F3070–83. link1

[71] Jiang SP. Challenges in the development of reversible solid oxide cell technologies: a mini review. Asia-Pac J Chem Eng 2016;11(3):386–91. link1

[72] Koo B, Kim K, Kim JK, Kwon H, Han JW, Jung WC. Sr segregation in perovskite oxides: why it happens and how it exists. Joule 2018;2(8):1476–99. link1

[73] Tsvetkov N, Lu Q, Sun L, Crumlin EJ, Yildiz B. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat Mater 2016;15(9):1010–6. link1

[74] Rupp GM, Opitz AK, Nenning A, Limbeck A, Fleig J. Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes. Nat Mater 2017;16(6):640–5. link1

[75] Li Y, Zhang W, Wu T, Zheng Y, Chen J, Yu B, et al. Segregation induced selfassembly of highly active perovskite for rapid oxygen reduction reaction. Adv Energy Mater 2018;8(29):1801893. link1

[76] Li M, Hua B, Chen J, Zhong Y, Luo JL. Charge transfer dynamics in RuO2/ perovskite nanohybrid for enhanced electrocatalysis in solid oxide electrolyzers. Nano Energy 2019;57:186–94. link1

[77] Song Y, Zhou S, Dong Q, Li Y, Zhang X, Ta N, et al. Oxygen evolution reaction over the Au/YSZ interface at high temperature. Angew Chem Int Ed 2019;58 (14):4617–21. link1

[78] Virkar AV. Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells. Int J Hydrogen Energy 2010;35(18):9527–43. link1

[79] Chen Y, Lin Y, Zhang Y, Wang S, Su D, Yang Z, et al. Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network. Nano Energy 2014;8:25–33. link1

[80] Wu T, Zhang W, Li Y, Zheng Y, Yu B, Chen J, et al. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance. Adv Energy Mater 2018;8(33):1802203. link1

[81] Li T, Wang T, Wei T, Hu X, Ye Z, Wang Z, et al. Robust anode-supported cells with fast oxygen release channels for efficient and stable CO2 electrolysis at ultrahigh current densities. Small 2021;17(6):2007211. link1

[82] Hauch A, Ebbesen SD, Jensen SH, Mogensen M. Highly efficient high temperature electrolysis. J Mater Chem 2008;18(20):2331–40. link1

[83] Brett DJL, Atkinson A, Brandon NP, Skinner SJ. Intermediate temperature solid oxide fuel cells. Chem Soc Rev 2008;37(8):1568–78. link1

[84] Chen IW, Kim SW, Li J, Kang SJL, Huang F. Ionomigration of neutral phases in ionic conductors. Adv Energy Mater 2012;2(11):1383–9. link1

[85] Jiang J, Hertz JL. On the variability of reported ionic conductivity in nanoscale YSZ thin films. J Electroceram 2014;32(1):37–46. link1

[86] Lenser C, Menzler NH. Impedance characterization of supported oxygen ion conducting electrolytes. Solid State Ion 2019;334:70–81. link1

[87] Yang K, Shen JH, Yang KY, Hung IM, Fung KZ, Wang MC. Formation of La2Zr2O7 or SrZrO3 on cathode-supported solid oxide fuel cells. J Power Sources 2006;159(1):63–7. link1

[88] Shen CT, Lee KR, Hsieh YP, Lee SW, Chang JK, Jang SC, et al. Effects of TiO2 and SDC addition on the properties of YSZ electrolyte. Int J Hydrogen Energy 2019;44(56):29426–31. link1

[89] Kim SJ, Kim KJ, Choi GM. Effect of Ce0.43Zr0.43Gd0.1Y0.04O2d contact layer on stability of interface between GDC interlayer and YSZ electrolyte in solid oxide electrolysis cell. J Power Sources 2015;284:617–22. link1

[90] Gao R, Jain ACP, Pandya S, Dong Y, Yuan Y, Zhou H, et al. Designing optimal perovskite structure for high ionic conduction. Adv Mater 2020;32 (1):1905178. link1

[91] Elangovan S, Hartvigsen JJ, Frost LJ. Intermediate temperature reversible fuel cells. Int J Appl Ceram Technol 2007;4(2):109–18. link1

[92] Fop S, Skakle JMS, McLaughlin AC, Connor PA, Irvine JTS, Smith RI, et al. Oxide ion conductivity in the hexagonal perovskite derivative Ba3MoNbO8.5. J Am Chem Soc 2016;138(51):16764–9. link1

[93] Choi S, Kucharczyk CJ, Liang Y, Zhang X, Takeuchi I, Ji HI, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat Energy 2018;3(3):202–10. link1

[94] Wachsman ED, Lee KT. Lowering the temperature of solid oxide fuel cells. Science 2011;334(6058):935–9. link1

[95] Luo Y, Shi Y, Li W, Cai N. Synchronous enhancement of H2O/CO2 coelectrolysis and methanation for efficient one-step power-to-methane. Energy Convers Manage 2018;165:127–36. link1

[96] Lee DY, Mehran MT, Kim J, Kim S, Lee SB, Song RH, et al. Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle. Appl Energy 2020;257:114036. link1

[97] Küngas R, Blennow P, Heiredal-Clausen T, Nørby TH, Rass-Hansen J, Primdahl S, et al. eCOs—a commercial CO2 electrolysis system developed by Haldor Topsøe. ECS Trans 2017;78(1):2879–84. link1

[98] Küngas R, Blennow P, Heiredal-Clausen T, Nørby TH, Rass-Hansen J, Hansen JB, et al. Progress in SOEC development activities at Haldor Topsøe. ECS Trans 2019;91(1):215–23. link1

[99] Posdziech O, Geißler T, Schwarze K, Blumentritt R. System development and demonstration of large-scale high-temperature electrolysis. ECS Trans 2019;91(1):2537–46. link1

[100] Dannesboe C, Hansen JB, Johannsen I. Catalytic methanation of CO2 in biogas: experimental results from a reactor at full scale. React Chem Eng 2020;5 (1):183–9. link1

[101] Hansen JB, Fock F, Lindboe HH. Biogas upgrading: by steam electrolysis or coelectrolysis of biogas and steam. ECS Trans 2013;57(1):3089–97. link1

[102] Song Y, Zhang X, Xie K, Wang G, Bao X. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. Adv Mater 2019;31(50):1902033. link1

[103] Andika R, Nandiyanto ABD, Putra ZA, Bilad MR, Kim Y, Yun CM, et al. Coelectrolysis for power-to-methanol applications. Renew Sustain Energy Rev 2018;95:227–41. link1

[104] Sapountzi FM, Gracia JM, Weststrate CJKJ, Fredriksson HOA, Niemantsverdriet JWH. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog Energy Combust Sci 2017;58:1–35. link1

[105] Wang Y, Liu T, Lei L, Chen F. High temperature solid oxide H2O/CO2 coelectrolysis for syngas production. Fuel Process Technol 2017;161:248–58. link1

[106] Giglio E, Lanzini A, Santarelli M, Leone P. Synthetic natural gas via integrated high-temperature electrolysis and methanation: part I—energy performance. J Energy Storage 2015;1:22–37. link1

[107] Graves C, Ebbesen SD, Mogensen M, Lackner KS. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew Sustain Energy Rev 2011;15(1):1–23. link1

Related Research