Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 4 doi: 10.15302/J-ENG-2015117

Cardiac Remote Conditioning and Clinical Relevance: All Together Now!

1 Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University, Chicago, IL 60153, USA
2 Hand and Microsurgical Center, TheSecond Affi liated Hospital of Harbin Medical University, Harbin 150001, China

Received: 2015-09-08 Revised: 2015-12-07 Accepted: 2015-12-14 Available online: 2015-12-30

Next Previous

Abstract

Acute myocardial infarction (AMI) is the leading cause of death and disability worldwide. Timely reperfusion is the standard of care and results in decreased infarct size, improving patient survival and prognosis. However, 25% of patients proceed to develop heart failure (HF) after myocardial infarction (MI) and 50% of these will die within five years. Since the size of the infarct is the major predictor of the outcome, including the development of HF, therapies to improve myocardial salvage have great potential. Over the past three decades, a number of stimuli have been discovered that activate endogenous cardioprotective pathways. In ischemic preconditioning (IPC) and ischemic postconditioning, ischemia within the heart initiates the protection. Brief reversible episodes of ischemia in vascular beds remote from the heart can also trigger cardioprotection when applied before, during, or immediately after myocardial ischemia—known as remote ischemic pre-, per-, and post-conditioning, respectively. Although the mechanism of remote ischemic preconditioning (RIPC) has not yet been fully elucidated, many mechanistic components are shared with IPC. The discovery of RIPC led to research into the use of remote non-ischemic stimuli including nerve stimulation (spinal and vagal), and electroacupuncture (EA). We discovered and, with others, have elucidated mechanistic aspects of a non-ischemic phenomenon we termed remote preconditioning of trauma (RPCT). RPCT operates via neural stimulation of skin sensory nerves and has similarities and differences to nerve stimulation and EA conducted at acupoints. We show herein that RPCT can be mimicked using electrical stimulation of the abdominal midline (EA-like treatment) and that this modality of activating cardioprotection is powerful as both a preconditioning and a postconditioning stimulus (when applied at reperfusion). Investigations of these cardioprotective phenomena have led to a more integrative understanding of mechanisms related to cardioprotection, and in the last five to ten years, it has become clear that the mechanisms are similar, whether induced by ischemic or non-ischemic stimuli. Taking together much of the data in the literature, we propose that all of these cardioprotective “conditioning” phenomena represent activation from different entry points of a cardiac conditioning network that converges upon specific mediators and effectors of myocardial cell survival, including NF-кB, Stat3/5, protein kinase C, bradykinin, and the mitoKATP channel. Nervous system pathways may represent a novel mechanism for initiating conditioning of the heart and other organs. IPC and RIPC have proven difficult to translate clinically, as they have associated risks and cannot be used in some patients. Because of this, the use of neural and nociceptive stimuli is emerging as a potential non-ischemic and non-traumatic means to initiate cardiac conditioning. Clinical relevance is underscored by the demonstration of postconditioning with one of these modalities, supporting the conclusion that the development of pharmaceuticals and electroceuticals for this purpose is an area ripe for clinical development.

Figures

Fig. 1

Fig. 2

References

[ 1 ] C. E. Murry, R. B. Jennings, K. A. Reimer. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74(5): 1124–1136 link1

[ 2 ] J. A. Auchampach, G. J. Gross. Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am. J. Physiol., 1993, 264(5 Pt 2): H1327–H1336

[ 3 ] Y. Guo, W. J. Wu, Y. Qiu, X. L. Tang, Z. Yang, R. Bolli. Demonstration of an early and a late phase of ischemic preconditioning in mice. Am. J. Physiol., 1998, 275(4 Pt 2): H1375–H1387

[ 4 ] D. M. Yellon, A. Dana. The preconditioning phenomenon: A tool for the scientist or a clinical reality? Circ. Res., 2000, 87(7): 543–550 link1

[ 5 ] M. A. Leesar, M. F. Stoddard, S. Manchikalapudi, R. Bolli. Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. J. Am. Coll. Cardiol., 1999, 34(3): 639–650 link1

[ 6 ] B. Ji, Evaluation by cardiac troponin I: The effect of ischemic preconditioning as an adjunct to intermittent blood cardioplegia on coronary artery bypass grafting. J. Card. Surg., 2007, 22(5): 394–400 link1

[ 7 ] L. K. Teoh, R. Grant, J. A. Hulf, W. B. Pugsley, D. M. Yellon. A comparison between ischemic preconditioning, intermittent cross-clamp fibrillation and cold crystalloid cardioplegia for myocardial protection during coronary artery bypass graft surgery. Cardiovasc. Surg., 2002, 10(3): 251–255 link1

[ 8 ] G. Heusch. Cardioprotection: Chances and challenges of its translation to the clinic. Lancet, 2013, 381(9861): 166–175 link1

[ 9 ] M. S. Marber, D. S. Latchman, J. M. Walker, D. M. Yellon. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation, 1993, 88(3): 1264–1272 link1

[10] S. Hoshida, N. Yamashita, K. Otsu, M. Hori. Repeated physiologic stresses provide persistent cardioprotection against ischemia-reperfusion injury in rats. J. Am. Coll. Cardiol., 2002, 40(4): 826–831 link1

[11] K. Przyklenk, B. Bauer, M. Ovize, R. A. Kloner, P. Whittaker. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993, 87(3): 893–899 link1

[12] T. B. McClanahan, B. S. Nao, L. J. Wolke, B. J. Martin, T. E. Metz, K. P. Gallagher. Brief renal occlusion and reperfusion reduces myocardial infarct size in rabbits. FASEB J., 1993, 7: A118 (abstract)

[13] G. Heusch, H. E. Bøtker, K. Przyklenk, A. Redington, D. Yellon. Remote ischemic conditioning. J. Am. Coll. Cardiol., 2015, 65(2): 177–195 link1

[14] S. M. Davidson, Remote ischaemic preconditioning involves signalling through the SDF-1α/CXCR4 signalling axis. Basic Res. Cardiol., 2013, 108(5): 377 link1

[15] K. Przyklenk. ‘Going out on a limb’: SDF-1α/CXCR4 signaling as a mechanism of remote ischemic preconditioning? Basic Res. Cardiol., 2013, 108(5): 382 link1

[16] T. Rassaf, M. Totzeck, U. B. Hendgen-Cotta, S. Shiva, G. Heusch, M. Kelm. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ. Res., 2014, 114(10): 1601–1610 link1

[17] J. Li, MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res. Cardiol., 2014, 109(5): 423 link1

[18] K. Przyklenk. microRNA-144: The ‘what’ and ‘how’ of remote ischemic conditioning? Basic Res. Cardiol., 2014, 109(5): 429 link1

[19] B. C. Gho, R. G. Schoemaker, M. A. van den Doel, D. J. Duncker, P. D. Verdouw. Myocardial protection by brief ischemia in noncardiac tissue. Circulation, 1996, 94(9): 2193–2200 link1

[20] C. Weinbrenner, M. Nelles, N. Herzog, L. Sárváry, R. H. Strasser. Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: A newly identified non-neuronal but PKC-dependent pathway. Cardiovasc. Res., 2002, 55(3): 590–601 link1

[21] S. Y. Lim, D. M. Yellon, D. J. Hausenloy. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res. Cardiol., 2010, 105(5): 651–655 link1

[22] W. R. Davies, Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: The CRISP stent trial long-term follow-up. Circ. Cardiovasc. Interv., 2013, 6(3): 246–251 link1

[23] L. Candilio, Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: A randomised controlled clinical trial. Heart, 2015, 101(3): 185–192 link1

[24] L. Li, Remote perconditioning reduces myocardial injury in adult valve replacement: A randomized controlled trial. J. Surg. Res., 2010, 164(1): e21–e26

[25] Z. Q. Zhao, Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol., 2003, 285(2): H579–H588 link1

[26] G. Heusch. Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr. Physiol., 2015, 5(3): 1123–1145

[27] C. M. Li, X. H. Zhang, X. J. Ma, M. Luo. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury. Scand. Cardiovasc. J., 2006, 40(5): 312–317 link1

[28] F. Kerendi, Remote postconditioning: Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res. Cardiol., 2005, 100(5): 404–412 link1

[29] L. Breivik, E. Helgeland, E. K. Aarnes, J. Mrdalj, A. K. Jonassen. Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res. Cardiol., 2011, 106(1): 135–145 link1

[30] S. Tamareille, RISK and SAFE signaling pathway interactions in remote limb ischemic preconditioning in combination with local ischemic postconditioning. Basic Res. Cardiol., 2011, 106(6): 1329–1339 link1

[31] M. R. Schmidt, Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: First demonstration of remote ischemic perconditioning. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(4): H1883–H1890

[32] H. E. Bøtker, Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: A randomised trial. Lancet, 2010, 375(9716): 727–734 link1

[33] P. Meybohm, ; RIPHeart Study Collaborators. A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med., 2015, 373(15): 1397–1407

[34] S. Pasupathy, S. Homer-Vanniasinkam. Surgical implications of ischemic preconditioning. Arch. Surg., 2005, 140(4): 405–409, discussion 410 link1

[35] A. J. Ludman, D. M. Yellon, D. J. Hausenloy. Cardiac preconditioning for ischaemia: Lost in translation. Dis. Model. Mech., 2010, 3(1−2): 35–38 link1

[36] M. Thielmann, Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: A single-centre randomised, double-blind, controlled trial. Lancet, 2013, 382(9892): 597–604 link1

[37] J. De Vries, M. J. De Jongste, G. Spincemaille, M. J. Staal. Spinal cord stimulation for ischemic heart disease and peripheral vascular disease. Adv. Tech. Stand. Neurosurg., 2007, 32: 63–89 link1

[38] S. S. Kong, J. J. Liu, X. J. Yu, Y. Lu, W. J. Zang. Protection against ischemia-induced oxidative stress conferred by vagal stimulation in the rat heart: Involvement of the AMPK-PKC pathway. Int. J. Mol. Sci., 2012, 13(11): 14311–14325

[39] J. H. Dong, Y. X. Liu, J. Zhao, H. J. Ma, S. M. Guo, R. R. He. High-frequency electrical stimulation of femoral nerve reduces infarct size following myocardial ischemia-reperfusion in rats. Acta Physiol. Sin., 2004, 56(5): 620–624

[40] J. Gao, W. Fu, Z. Jin, X. Yu. A preliminary study on the cardioprotection of acupuncture pretreatment in rats with ischemia and reperfusion: Involvement of cardiac β-adrenoceptors. J. Physiol. Sci., 2006, 56(4): 275–279

[41] W. Zhou, Cardioprotection of electroacupuncture against myocardial ischemia-reperfusion injury by modulation of cardiac norepinephrine release. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(9): H1818–H1825 link1

[42] W. K. Jones, Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation, 2009, 120(11 Suppl 1): S1–S9 link1

[43] A. C. Merlocco, Transcutaneous electrical nerve stimulation as a novel method of remote preconditioning: In vitro validation in an animal model and first human observations. Basic Res. Cardiol., 2014, 109(3): 406 link1

[44] H. Jneid, M. Leessar, R. Bolli. Cardiac preconditioning during percutaneous coronary interventions. Cardiovasc. Drugs. Ther., 2005, 19(3): 211–217 link1

[45] S. R. Walsh, T. Tang, U. Sadat, D. P. Dutka, M. E. Gaunt. Cardioprotection by remote ischaemic preconditioning. Br. J. Anaesth., 2007, 99(5): 611–616 link1

[46] G. Heusch. Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res., 2015, 116(4): 674–699 link1

[47] P. Xin, Combined local ischemic postconditioning and remote perconditioning recapitulate cardioprotective effects of local ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol., 2010, 298(6): H1819–H1831

[48] F. Prunier, The RIPOST-MI study, assessing remote ischemic perconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Res. Cardiol., 2014, 109(2): 400 link1

[49] M. Wei, Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ. Res., 2011, 108(10): 1220–1225 link1

[50] R. Hattori, Role of STAT3 in ischemic preconditioning. J. Mol. Cell. Cardiol., 2001, 33(11): 1929–1936 link1

[51] N. Suleman, S. Somers, R. Smith, L. H. Opie, S. C. Lecour. Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc. Res., 2008, 79(1): 127–133 link1

[52] J. Sachdeva, W. Dai, P. Z. Gerczuk, R. A. Kloner. Combined remote perconditioning and postconditioning failed to attenuate infarct size and contractile dysfunction in a rat model of coronary artery occlusion. J. Cardiovasc. Pharmacol. Ther., 2014, 19(6): 567–573 link1

[53] F. Z. Meerson, Adaptive stabilization of myocardium under the influence of electroacupuncture and cardiac protection. Kardiologiia, 1991, 31(10): 72–77 (in Russian)

[54] E. Vanoli, G. M. De Ferrari, M. Stramba-Badiale, S. S. Hull Jr., R. D. Foreman, P. J. Schwartz. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ. Res., 1991, 68(5): 1471–1481 link1

[55] G. Zuanetti, G. M. De Ferrari, S. G. Priori, P. J. Schwartz. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ. Res., 1987, 61(3): 429–435 link1

[56] M. Goto, Y. Liu, X. M. Yang, J. L. Ardell, M. V. Cohen, J. M. Downey. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ. Res., 1995, 77(3): 611–621 link1

[57] R. Schulz, H. Post, C. Vahlhaus, G. Heusch. Ischemic preconditioning in pigs: A graded phenomenon: Its relation to adenosine and bradykinin. Circulation, 1998, 98(10): 1022–1029 link1

[58] C. Erşahin, D. E. Euler, W. H. Simmons. Cardioprotective effects of the aminopeptidase P inhibitor apstatin: Studies on ischemia/reperfusion injury in the isolated rat heart. J. Cardiovasc. Pharmacol., 1999, 34(4): 604–611 link1

[59] R. G. Schoemaker, C. L. van Heijningen. Bradykinin mediates cardiac preconditioning at a distance. Am. J. Physiol. Heart Circ. Physiol., 2000, 278(5): H1571–H1576

[60] R. K. Kudej, Obligatory role of cardiac nerves and α1-adrenergic receptors for the second window of ischemic preconditioning in conscious pigs. Circ. Res., 2006, 99(11): 1270–1276 link1

[61] K. L. Redington, Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res. Cardiol., 2012, 107(2): 241 link1

[62] X. Ren, Y. Wang, W. K. Jones. TNF-α is required for late ischemic preconditioning but not for remote preconditioning of trauma. J. Surg. Res., 2004, 121(1): 120–129

[63] S. Eddicks, K. Maier-Hauff, M. Schenk, A. Müller, G. Baumann, H. Theres. Thoracic spinal cord stimulation improves functional status and relieves symptoms in patients with refractory angina pectoris: The first placebo-controlled randomised study. Heart, 2007, 93(5): 585–590 link1

[64] G. A. Sgueglia, A. Sestito. Spinal cord stimulation: A new form of pain modulatory treatment in cardiac syndrome X. Am. J. Med., 2007, 120(9): e17 link1

[65] E. M. Southerland, Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(1): H311–H317

[66] K. Sroka. On the genesis of myocardial ischemia. Z. Kardiol., 2004, 93(10): 768–783 link1

[67] D. L. Jardine, Increased cardiac sympathetic nerve activity following acute myocardial infarction in a sheep model. J. Physiol., 2005, 565(1): 325–333 link1

[68] E. A. Jankowska, P. Ponikowski, M. F. Piepoli, W. Banasiak, S. D. Anker, P. A. Poole-Wilson. Autonomic imbalance and immune activation in chronic heart failure—Pathophysiological links. Cardiovasc. Res., 2006, 70(3): 434–445 link1

[69] M. T. Tsou, C. H. Huang, J. H. Chiu. Electroacupuncture on PC6 (Neiguan) attenuates ischemia/reperfusion injury in rat hearts. Am. J. Chin. Med., 2004, 32(6): 951–965

[70] X. R. Wang, J. Xiao, D. J. Sun. Myocardial protective effects of electroacupuncture and hypothermia on porcine heart after ischemia/reperfusion. Acupunct. Electrother. Res., 2003, 28(3−4): 193–200

[71] K. L. Redington, Electroacupuncture reduces myocardial infarct size and improves post-ischemic recovery by invoking release of humoral, dialyzable, cardioprotective factors. J. Physiol. Sci., 2013, 63(3): 219–223

[72] C. R. Hampton, HSP70.1 and-70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts. Am. J. Physiol. Heart Circ. Physiol., 2003, 285(2): H866–H874 link1

[73] M. Tranter, NF-κB driven cardioprotective gene programs; Hsp70.3 and cardioprotection after late ischemic preconditioning. J. Mol. Cell. Cardiol., 2010, 49(4): 664–672 link1

[74] P. Y. Liu, Y. Tian, S. Y. Xu. Mediated protective effect of electroacupuncture pretreatment by miR-214 on myocardial ischemia/reperfusion injury. J. Geriatr. Cardiol., 2014, 11(4): 303–310

[75] D. Y. Wan, Z. Zhang, H. H. Yang. Cardioprotective effect of miR-214 in myocardial ischemic postconditioning by down-regulation of hypoxia inducible factor 1, α subunit inhibitor. Cell. Mol. Biol. (Noisy-le-grand), 2015, 61(2): 1–6

[76] W. K. Jones, Ischemic preconditioning increases iNOS transcript levels in conscious rabbits via a nitric oxide-dependent mechanism. J. Mol. Cell. Cardiol., 1999, 31(8): 1469–1481 link1

[77] J. Bagust, Y. Chen, G. A. Kerkut. Spread of the dorsal root reflex in an isolated preparation of hamster spinal cord. Exp. Physiol., 1993, 78(6): 799–809 link1

[78] C. M. Brooks, K. Koizumi. Origin of the dorsal root reflex. J. Neurophysiol., 1956, 19(1): 60–74

[79] K. Koketsu. Intracellular potential changes of primary afferent nerve fibers in spinal cords of cats. J. Neurophysiol., 1956, 19(5): 375–392

[80] J. Bagust, I. D. Forsythe, G. A. Kerkut. An investigation of the dorsal root reflex using an in vitro preparation of the hamster spinal cord. Brain Res., 1985, 331(2): 315–325 link1

[81] G. P. McCouch, G. M. Austin. Postsynaptic source of dorsal root reflex. J. Neurophysiol., 1958, 21(3): 217–223

[82] J. Bagust, G. A. Kerkut, N. I. Rakkah. Differential sensitivity of dorsal and ventral root activity to magnesium and 2-amino-5-phosphonovalerate (APV) in an isolated mammalian spinal cord preparation. Brain Res., 1989, 479(1): 138–144 link1

[83] A. Hassouna, B. M. Matata, M. Galiñanes. PKC-ε is upstream and PKC-α is downstream of mitoKATP channels in the signal transduction pathway of ischemic preconditioning of human myocardium. Am. J. Physiol. Cell Physiol., 2004, 287(5): C1418–C1425

[84] S. Y. Lim, D. J. Hausenloy. Remote ischemic conditioning: From bench to bedside. Front. Physiol., 2012, 3: 27

[85] G. J. Gross, J. E. Baker, J. Moore, J. R. Falck, K. Nithipatikom. Abdominal surgical incision induces remote preconditioning of trauma (RPCT) via activation of bradykinin receptors (BK2R) and the cytochrome P450 epoxygenase pathway in canine hearts. Cardiovasc. Drugs Ther., 2011, 25(6): 517–522 link1

[86] E. R. Gross, A. K. Hsu, T. J. Urban, D. Mochly-Rosen, G. J. Gross. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C. Basic Res. Cardiol., 2013, 108(5): 381 link1

[87] G. J. Gross, K. M. Gauthier, J. Moore, W. B. Campbell, J. R. Falck, K. Nithipatikom. Evidence for role of epoxyeicosatrienoic acids in mediating ischemic preconditioning and postconditioning in dog. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1): H47–H52 link1

[88] Q. Chai, J. Liu, Y. Hu. Cardioprotective effect of remote preconditioning of trauma and remote ischemia preconditioning in a rat model of myocardial ischemia/reperfusion injury. Exp. Ther. Med., 2015, 9(5): 1745–1750

[89] N. Seyedi, T. Win, H. M. Lander, R. Levi. Bradykinin B2-receptor activation augments norepinephrine exocytosis from cardiac sympathetic nerve endings. Mediation by autocrine/paracrine mechanisms. Circ. Res., 1997, 81(5): 774–784 link1

[90] Y. J. Li, J. Peng. The cardioprotection of calcitonin gene-related peptide-mediated preconditioning. Eur. J. Pharmacol., 2002, 442(3): 173–177 link1

[91] S. Wolfrum, J. Nienstedt, M. Heidbreder, K. Schneider, P. Dominiak, A. Dendorfer. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. Regul. Pept., 2005, 127(1−3): 217–224 link1

[92] Q. J. Song, Y. J. Li, H. W. Deng. Early and delayed cardioprotection by heat stress is mediated by calcitonin gene-related peptide. Naunyn Schmiedebergs Arch. Pharmacol., 1999, 359(6): 477–483 link1

[93] D. Li, Calcitonin gene-related peptide-mediated cardioprotection of postconditioning in isolated rat hearts. Regul. Pept., 2008, 147(1−3): 4–8 link1

[94] G. W. Dorn II, T. Force. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest., 2005, 115(3): 527–537 link1

[95] P. Ping, Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ. Res., 1999, 85(6): 542–550 link1

[96] S. Wolfrum, K. Schneider, M. Heidbreder, J. Nienstedt, P. Dominiak, A. Dendorfer. Remote preconditioning protects the heart by activating myocardial PKCε-isoform. Cardiovasc. Res., 2002, 55(3): 583–589 link1

[97] E. N. Churchill, D. Mochly-Rosen. The roles of PKCδ and ε isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem. Soc. Trans., 2007, 35(5): 1040–1042 link1

[98] K. Inagaki, Inhibition of δ-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation, 2003, 108(19): 2304–2307 link1

[99] C. Vahlhaus, R. Schulz, H. Post, R. Onallah, G. Heusch. No prevention of ischemic preconditioning by the protein kinase C inhibitor staurosporine in swine. Circ. Res., 1996, 79(3): 407–414 link1

[100] R. Brandman, M. H. Disatnik, E. Churchill, D. Mochly-Rosen. Peptides derived from the C2 domain of protein kinase Cε (εPKC) modulate εPKC activity and identify potential protein-protein interaction surfaces. J. Biol. Chem., 2007, 282(6): 4113–4123

[101] G. W. Dorn II, D. Mochly-Rosen. Intracellular transport mechanisms of signal transducers. Annu. Rev. Physiol., 2002, 64: 407–429 link1

[102] G. J. Gross. The role of mitochondrial KATP channels in cardioprotection. Basic Res. Cardiol., 2000, 95(4): 280–284 link1

[103] O. Oldenburg, Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am. J. Physiol. Heart Circ. Physiol., 2004, 286(1): H468–H476

[104] S. Pasupathy, S. Homer-Vanniasinkam. Ischaemic preconditioning protects against ischaemia/reperfusion injury: Emerging concepts. Eur. J. Vasc. Endovasc. Surg., 2005, 29(2): 106–115 link1

[105] Z. Lacza, J. A. Snipes, A. W. Miller, C. Szabó, G. Grover, D. W. Busija. Heart mitochondria contain functional ATP-dependent K+ channels. J. Mol. Cell. Cardiol., 2003, 35(11): 1339–1347 link1

[106] G. R. Gaudette, I. B. Krukenkamp, A. E. Saltman, H. Horimoto, S. Levitsky. Preconditioning with PKC and the ATP-sensitive potassium channels: A codependent relationship. Ann. Thorac. Surg., 2000, 70(2): 602–608 link1

[107] Y. Nozawa, T. Miura, T. Miki, Y. Ohnuma, T. Yano, K. Shimamoto. Mitochondrial KATP channel-dependent and-independent phases of ischemic preconditioning against myocardial infarction in the rat. Basic Res. Cardiol., 2003, 98(1): 50–58 link1

[108] R. K. Kharbanda, T. T. Nielsen, A. N. Redington. Translation of remote ischaemic preconditioning into clinical practice. Lancet, 2009, 374(9700): 1557–1565 link1

[109] S. Reardon. Electroceuticals spark interest. Nature, 2014, 511(7507): 18

[110] M. Tirrell. GlaxoSmithKline’s big bet on electroceuticals. CNBC News, 2015-03-11. http://www.cnbc.com/2015/03/11/glaxosmithklines-big-bet-on-electroceuticals.html

Related Research