Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2016, Volume 18, Issue 3 doi: 10.15302/J-SSCAE-2016.03.002

Development Strategy for Aquaculture Genetic Breeding and Seed Industry

1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;

2. Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China

Funding project:中国工程院重点咨询项目“水产养殖业十三五规划战略研究”(2014-XZ-19-3) Received: 2016-04-20 Revised: 2016-05-03 Available online: 2016-06-29 13:33:03.000

Next Previous

Abstract

Along with the development of aquatic biology and biotechnology in recent two decades, China has made remarkable achievements with its aquaculture genetic breeding and seed industries, while facing with opportunities and challenges in the process. Around a range of topics related to these industries, including genetic resource preservation and utilization, genetic mechanism analysis and gene function discovery, novel variety breeding with good traits, and seed industry in aquaculture, This paper comparatively analyzes the status and problems of these industries from both national and international perspectives, and attempts to provide some suggestions and major policy goals for the two industries in the future, especially in the China's 13th Five Year Plan.

Figures

图 1

References

[ 1 ] 桂建芳. 鱼类生物学和生物技术是水产养殖可持续发展的源泉[J]. 中国科学: 生命科学, 2014, 44: 1195–1197. link1

[ 2 ] Brown L R. Plan B 2.0: Rescuing a Planet Under Stress and a Civilization in Trouble [M]. Washington, DC: Earth Policy Institure, International Publishers; 2006.

[ 3 ] Food and Agriculture Organization of the United Nations. The state of world fisheries and aquacuture 2014 [M]. Rome: FAO; 2014. link1

[ 4 ] 桂建芳, 朱作言. 水产动物重要经济性状的分子基础及其遗传改良[J]. 科学通报, 2012, 57: 1719–29. link1

[ 5 ] 桂建芳. 水生生物学科学前沿及热点问题[J]. 科学通报, 2015, 60: 2051–2057. link1

[ 6 ] Wang D, Mao H L, Chen H X, et al. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations [J]. Anim Genet. 2009; 40: 978–981. link1

[ 7 ] Liu H Q, Guan B, Xu J, et al. Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson)) [J]. Mar Biotechnol. 2013; 15: 321–328. link1

[ 8 ] Dan C, Mei J, Wang D, et al. Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish [J]. Int J Biol Sci. 2013; 9: 1043–1049. link1

[ 9 ] Pan Z J, Li X Y, Zhou F J, et al. Identification of sex-specific markers reveals male heterogametic sex determination in Pseudobagrus ussuriensis [J]. Mar Biotechnol. 2015; 17(4): 441–451. link1

[10] Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle [J]. Nat Genet. 2014; 46(3): 253–260. link1

[11] Zhang G, Fang X, Guo X, et al. The oyster genome reveals stress adaptation and complexity of shell formation [J]. Nature. 2012; 490: 49–54. link1

[12] Xu P, Zhang X, Wang X, et al. Genome sequence and genetic diversity of common carp, Cyprinus carpio [J]. Nat Genet. 2014; 46:1212–1219. link1

[13] Wang Y, Lu Y, Zhang Y, et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation [J]. Nat Genet. 2015; 47(6): 625– 631. link1

[14] Wu C W, Zhang D, Kan M Y, et al. The draft genome of the large 014综合研究   水产遗传育种与水产种业发展战略研究yellow croaker reveals well-developed innate immunity [J]. Nat Comm. 2014; 5: 5227–5234.

[15] Ao J Q, Mu Y N, Xiang L X, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation [J]. PLOS Genet. 2015; 11(4): e1005118. link1

[16] Liu S J, Luo J, Chai J, et al. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish X common carp cross [J]. Proc Nat Acad Sci USA. 2016; 113(5): 1327–1332. link1

[17] 桂建芳, 周莉. 多倍体银鲫克隆多样性和双重生殖方式的遗传基础和育种应用 [J]. 中国科学: 生命科学, 2010, 42(2): 97– 103. link1

[18] 梅洁,桂建芳. 鱼类性别异形和性别决定的遗传基础及其生物技术操控 [J]. 中国科学: 生命科学, 2014, 44(12): 1198–212. link1

[19] 陈松林. 鱼类性别控制与细胞工程育种[M]. 北京: 科学出版社, 2013.

[20] 刘少军. 远缘杂交导致不同倍性鱼的形成 [J]. 中国科学:生命科学, 2010, 40(2): 104–114. link1

[21] 叶鼎, 朱作言, 孙永华. 鱼类基因组操作与定向育种 [J]. 中国科学: 生命科学, 2014, 44: 1253–61。 Ye D, Zhu Z Y, Sun Y H. Fish genome manipulation and directional breeding [J]. Sci Chin (Life Sci). 2015; 58 (2): 170–177. link1

[22] Jiao W, Fu X, Dou J, et al. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: Building upan integrative genomic framework for a bivalve mollusk [J]. DNA Res. 2014; 21: 85–101. link1

[23] Dou J, Li X, Fu Q, et al. Evaluation of the 2b-RAD method for genomic selection in scallop breeding [J]. Sci Rep. 2016; 6: 19244. link1

[24] Li H, Wang J, Bao Z. A novel genomic selection method combining GBLUP and LASSO [J]. Genetica. 2015; 143: 299–304. link1

[25] 雷霁霖. 水产种业未来之路[J] . 海洋与渔业, 2013, 1: 55–57. link1

[26] 唐启升. 中国水产种业创新驱动发展战略研究报告[M] . 北京: 科学出版社, 2014.

[27] Blackburn H D. The national animal germplasm program: Challenges and opportunities for poultry genetic resources [J]. Poult Sci. 2006; 85(2): 210–215. link1

[28] Fuji K, Hasegawa O, Honda Kumasaka K, et al. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys oli- vaceus) [J]. Aquaculture. 2007; 272: 291–295. link1

[29] Ozaki A, Araki K, Okamoto H. Progress of DNA marker-assisted breeding in maricultured finfish [J]. Bull Fish Res Agency (Jpn.). 2012; 35: 31–37. link1

[30] 海洋农业产业科技创新战略研究组良种选育与苗种繁育专题组. 创新驱动海洋种业的建议及对策[J]. 中国农村科技, 2013, 222: 70–73.

[31] Naylor R L, Goldburg R J, Primavera J H, et al. Effect of aquaculture on world fish supplies [J]. Nature. 2000; 405: 1017–1024. link1

[32] Pauly D, Christensen V, Guénette S, et al. Towards sustainability in world fisheries [J]. Nature. 2002; 418: 689–695. link1

[33] James H T, Geoff L A. Fishes as food: Aquaculture’s contribution [J]. EMBO Rep. 2001; 21: 958–963.

[34] Béné C, Barange M, Subasinghe R, et al. Feeding 9 billion by 2050—putting fish back on the menu [J]. Food Sec. 2015; 7(2): 261–274. link1

[35] Gjedrem T. Genetic improvement for the development of efficient global aquaculture: a personal opinion review [J]. Aquaculture. 2012; 344–349: 12–22. link1

[36] Gjedrem T, Robinson N, Rye M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review [J]. Aquaculture. 2012; 350–353: 117–129. link1

[37] Gjedrem T. Disease resistant fish and shellfish are within reach: a review [J]. J Mar Sci Eng. 2015; 3: 146–153. link1

[38] Villasante S, Rodriguez-Gonzalez D, Antelo M, et al. All fish for China? [J]. AMBIO. 2013; 42: 923–936. link1

Related Research