Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2022, Volume 24, Issue 3 doi: 10.15302/J-SSCAE-2022.03.015

Research Progress of Hydrogen Separation Membrane

1. Shenhua Ordos Coal to Oil Branch of China Energy Group, Ordos 017209, Inner Mongolia, China;

2. Guohua Energy Investment Co., Ltd., Beijing 100007, China;

3. National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China;

4. National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, Beijing 100088, China;

5. GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China

Funding project:National Key R&D Program of China (2019YFB1505000); Chinese Academy of Engineering project “Strategic Research on Hydrogen Energy and Fuel Cell Development in China” (2019-ZD-03) Received: 2022-03-25 Revised: 2022-05-17 Available online: 2022-06-23

Next Previous

Abstract

Hydrogen is a significant industrial raw material and clean fuel, and hydrogen separation has significant social and economic values. Membrane separation has a wide application prospect in hydrogen separation as it uses simple devices, is environmentally friendly, and has high conversion efficiency and low cost of investment. Hydrogen separation membranes remain a research focus as their performance is the major factor that determines hydrogen separation efficiency. This study summarized the application demand and basic mechanism of hydrogen separation membranes and reviewed the research progress of dense metal, porous inorganic, metal-organic framework (MOF), organic polymer, and hybrid matrix membranes. Specifically, although porous inorganic, organic polymer, and hybrid matrix membranes have good hydrogen separation and purification performances, their separation performance still requires improvement when they are applied in distributed and small application scenarios. Improving the anti-poisoning performance of palladium-based metal membranes and optimizing the cost-effectiveness are effective ways to promote industrial application of membranes. Combining the advantages of porous inorganic and MOF membranes can facilitate the significant development of molecular sieving membranes. The high-temperature resistance and mechanical properties of organic polymer membranes require improvement. Modifying existing polymer membrane materials and preparing polymer alloys are two major directions for developing novel gas separation membranes. The performance of hybrid matrix membrane can be notably improved after controllable adjustment of its distribution. The research and application of multiple membranes has supported hydrogen separation and purification, and these membrane techniques will continue creating more engineering values once the number of available materials is increased and the preparation technologies are advanced in the future.

Figures

图1

图2

图3

图4

References

[ 1 ] 中国氢能联盟 . 中国氢能源及燃料电池产业白皮书2020 [R]. 北京 : 中国氢能联盟 , 2021 .

[ 2 ] Du Z M, Liu C M, Zhai J X, et al. A review of hydrogen purification technologies for fuel cell vehicles [J]. Catalyst, 2021,11(3): 1‒19.

[ 3 ] Park Y, Kang J H, Moon D K, et al. Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture [J]. Chemical Engineering Journal, 2021, 408: 1‒15.

[ 4 ] Abdeljaoued A, Relvasc F, Mendesc A, et al. Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells [J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 338‒355.

[ 5 ] Sazali N, Mohamed M A, Salleh W N W. Membranes for hydrogen separation: A significant review [J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 1859‒1881.

[ 6 ] Saini N, Awasthi K. Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources [J]. Separation and Purification Technology, 2022, 282: 1‒15.

[ 7 ] Barelli L, Bidini G, Gallorini F, et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review [J]. Energy, 2008, 33(4): 554‒570.

[ 8 ] Minchener A J. Coal gasification for advanced power generation [J]. Fuel, 2005, 84(17): 2222‒2235.

[ 9 ] Adhikari S, Fernando S D. Hydrogen membrane separation techniques [J]. Industrial & Engineering Chemistry Research, 2006, 45(3): 875‒881.

[10] Li P Y, Wang Z, Qiao Z H, et al. Recent developments in membranes for efficient hydrogen purification [J]. Journal of Membrane Science, 2015, 495: 130‒168.

[11] Gruener S, Huber P. Knudsen diffusion in silicon nanochannels [J]. Physical Review Letters, 2008, 100: 1‒15.

[12] 恽正中 , 王恩信 , 完利祥 . 表面与界面物理 [M]. 成都 : 电子科技大学出版社 , 1993 .

[13] 时钧 , 袁权 , 高从堦 . 膜技术手册 [M]. 北京 : 化学工业出版社 , 2000 .

[14] Li S C, Wang Z, Yu X W, et al. High-performance membranes with multi-permselectivity for CO2 separation [J]. Advanced Materials, 2012, 24(24): 3196‒3200.

[15] Wu W H, Yang Q, Su B. Centimeter-scale continuous silica isoporous membranes for molecular sieving [J]. Journal of Membrane Science, 2018, 558: 86‒93.

[16] Javaid A. Membranes for solubility-based gas separation applications [J]. Chemical Engineering Journal, 2005, 112(1‒3): 219‒226.

[17] Li Y F, Wang S F, He G W, et al. Facilitated transport of small molecules and ions for energy-efficient membranes [J]. Chemical Society Reviews, 2015, 44(1): 103‒118.

[18] Hatlevik O, Gade S K, Keeling M K, et al. Palladium and palladium alloy membranes for hydrogen separation and production: History, fabrication strategies, and current performance [J]. Separation and Purification Technology, 2010, 73(1): 59‒64.

[19] Lewis F A. The palladium-hydrogen system [M]. London: Academic Press, 1967.

[20] Wipf F. Solubility and diffusion of hydrogen in pure metals and alloy [J]. Physica Scripta, 2001, 94: 43‒51.

[21] Siriwardane R V, Poston J A, Fisher E P, et al. Characterization of ceramic hydrogen separation membranes [J]. Applied Surface Science, 2000, 167(1‒2): 34‒50.

[22] Yun S H, Oyama S T. Correlations in palladium membranes for hydrogen separation: A review [J]. Journal of Membrane Science, 2011, 375(1‒2): 28‒45.

[23] Phair J, Donelson R. Developments and design of novel(non-palladium-based) metal membranes for hydrogen separation [J]. Industrial & Engineering Chemistry Research, 2006, 45(16): 5657‒5674.

[24] Buxbaum R E, Marker T L. Hydrogen transport through non-porous membranes of palladium-coated niobium, tantalum and vanadium [J]. Journal of Membrane Science, 1993, 85(1): 29‒38.

[25] Mundschau M V. Hydrongen transport membranes: US6899744 B2 [P]. 2005.

[26] Roark S E, Mackay R, Mundschau M V. Dense, layered membranes for hydrogen separation: US7001446 B2 [P]. 2006.

[27] Holleck G L. Diffusion and solubility of hydrogen in palladium and palladium-silver alloys [J]. The Journal of Physical Chemistry, 1970, 74: 503‒511.

[28] Buxbaum R E. Composite metal membrane for hydrogen extraction: US5215729 A [P]. 1993.

[29] Jemaa N, Shu J, Kaliaguine S, et al. Thin palladium film formation on shot peening modified porous stainless steel substrates [J]. Industrial & Engineering Chemistry Research, 1996, 35(3): 973‒977.

[30] Edlund D J, Pledger W A. Catalytic platinum-based membrane reactor for removal of H2S from natural gas streams [J]. Journal of Membrane Science, 1994, 94(1): 111‒119 .

[31] Amandusson H, Ekedahl L G, Dannetun H. The effect of CO and O2 on hydrogen permeation through a palladium membrane [J]. Applied Surface Science, 2000, 153(4): 259‒267.

[32] Li A, Liang W, Hughes R. The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane [J]. Journal of Membrane Science, 2000, 165(1): 135‒141.

[33] Bryden K J, Ying J Y. Nanostructured palladium-iron membranes for hydrogen separation and membrane hydrogenation reactions [J]. Journal of Membrane Science, 2002, 203(1‒2): 29‒42.

[34] Qiao A L, Zhang K, Tian Y, et al. Hydrogen separation through palladium-copper membranes on porous stainless steel with sol-gel derived ceria as diffusion barrier [J]. Fuel, 2010, 89(6): 1274‒1279.

[35] Uemiya S, Endo T, Yoshiie R, et al. Fabrication of thin palladium-silver alloy film by using electroplating technique [J]. Materials Transactions, 2007, 48(5): 1119‒1123.

[36] Shigeyuki U, Yukinori Y, Kohzoh S, et al. A palladium/porous-glass composite membrane for hydrogen separation [J]. Chemistry Letters, 1988, 17(10): 1687‒1690.

[37] Altinisik O, Dogan M, Dogu G. Preparation and characterization of Pd-plated porous glass for hydrogen enrichment [J]. Catalysis Today, 2005, 105(3‒4): 641‒646.

[38] Xomeritakis G, Lin Y S. CVD synthesis and gas permeation properties of thin Pd/alumina membranes [J]. AIChE Journal, 1998, 44(1): 174‒183.

[39] Ye J, Dan G, Yuan Q. The preparation of ultrathin palladium membranes [J]. Key Engineering Materials, 1991, 61‒62: 437‒442.

[40] Mattox D M. Handbook of physical vapor deposition (PVD) process [M]. New Jersey: William Andrew Inc., 1998.

[41] Nam S E, Lee K H. A study on the palladium /nickel composite membrane by vacuum electrodeposition [J]. Journal of Membrane Science, 2000, 170(1): 91‒99.

[42] Mckinley D L. Method for hydrogen separation and purification [EB/OL]. ‍(2017-05-15)‍[2022-01-15]. ‍https://www.‍semanticscholar.org/paper/METHOD-FOR-HYDROGEN-SEPARATION-AND-PURIFICATION-McKinley/36dd88a92a548a5fa8cbc82cd7cd61da1ff68bcc#extracted. link1

[43] Gade S K, Thoen P M, Way J D. Unsupported palladium alloy foil membranes fabricated by electroless plating [J]. Journal of Membrane Science, 2008, 316(1‒2): 112‒118.

[44] Mazali I O, Filho A G S, Viana B C, et al. Size-controllable synthesis of nanosized-TiO2 anatase using porous vycor glass as template [J]. Journal of Nanoparticle Research, 2006, 8: 141‒148.

[45] Masuda H, Nishio K, Baba N. Preparation of microporous metal membrane using two-step replication of interconnected structure of porous glass [J]. Journal of Materials Science, 1994, 13: 338‒340.

[46] Uemiya S, Sato N, Ando H, et al. Separation of hydrogen through palladium thin film supported on a porous glass tube [J]. Journal of Membrane Science, 1991, 56(3): 303‒313.

[47] Kuraoka K, Zhao H, Yazawa T. Pore-filled palladium-glass composite membranes for hydrogen [J]. Journal of Materials Science, 2004, 39: 1879‒1881.

[48] Zhang X L, Xiong G X, Yang W S. A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability [J]. Journal of Membrane Science, 2008, 314(1‒2): 226‒237.

[49] Itoh N, Akiha T, Sato T. Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity [J]. Catalysis Today, 2005, 104(2‒4): 231‒237.

[50] Zhao C Y, Xu H Y, Goldbach A. Duplex Pd/ceramic/Pd composite membrane for sweep gas-enhanced CO2 capture [J]. Journal of Membrane Science, 2018, 563: 388‒397.

[51] Melendez J, Fernandez E, Gallucci F, et al. Preparation and characterization of ceramic supported ultra-thin (~1 µm) Pd-Ag membranes [J]. Journal of Membrane Science, 2017, 528: 12‒23.

[52] Abate S, Genovese C, Perathoner S, et al. Performances and stability of a Pd-based supported thin film membrane prepared by EPD with a novel seeding procedure: Part 1-Behaviour in H2:N2 mixtures [J]. Catalysis Today, 2009, 145(1‒2): 63‒71.

[53] Wang L S, Yoshiie R, Uemiya S. Fabrication of novel Pd-Ag-Ru/Al2O3 ternary alloy composite membrane with remarkably enhanced H2 permeability [J]. Journal of Membrane Science, 2007, 306(1‒2): 1‒7.

[54] Guo Y, Zhang X F, Deng H, et al. A novel approach for the preparation of highly stable Pd membrane on macroporous α‍-Al2O3 tube [J]. Journal of Membrane Science, 2010, 362(1‒2): 241‒248.

[55] Tong J H, Su L L, Haraya K, et al. Thin and defect-free Pd-based composite membrane without any interlayer and substrate penetration by a combined organic and inorganic process [J]. Chemical Communication, 2006, 10: 1142‒1144.

[56] Tong J H, Shirai R, Kashima Y, et al. Preparation of a pinhole-free Pd-Ag membrane on a porous metal support for pure hydrogen separation [J]. Journal of Membrane Science, 2005, 260(1‒2): 84‒89.

[57] Lee S M, Xu N, Kim S S, et al. Palladium/ruthenium composite membrane for hydrogen separation from the off-gas of solar cell production via chemical vapor deposition [J]. Journal of Membrane Science, 2017, 541: 1‒8.

[58] Gascon J, Kapteijn F, Zornoza B, et al. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives [J]. Chemistry of Materials, 2012, 24(15): 2829‒2844.

[59] Lin Y S, Duke M C. Recent progress in polycrystalline zeolite membrane research [J]. Current Opinion in Chemical Engineering, 2013, 2(2): 209‒216.

[60] Huang A S, Liang F Y, Steinbach F, et al. Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker [J]. Journal of Membrane Science, 2010, 350(1‒2): 5‒9.

[61] Huang A S, Liu Q, Wang N Y, et al. Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyltrimethoxysilane functionalized supports [J]. Journal of Membrane Science, 2013, 437: 57‒64.

[62] Tang Z, Dong J H, Nenoff T M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen [J]. Langmuir, 2009, 25(9): 4848‒4852.

[63] Duke M C, Pas S J, Hill A J, et al. Exposing the molecular sieving architecture of amorphous silica using positron annihilation spectroscopy [J]. Advanced Functional Materials, 2008, 18(23): 3818‒3826.

[64] Gu Y F, Oyama S T. Ultrathin, hydrogen-selective silica membranes deposited on alumina-graded structures prepared from size-controlled boehmite sols [J]. Journal of Membrane Science, 2007, 306(1‒2): 216‒227.

[65] Kiyono M, Williams P J, Koros W J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes [J]. Journal of Membrane Science, 2010, 359(1‍‒‍2): 2‒10.

[66] He X Z, Hägg M B. Hollow fiber carbon membranes: From material to application [J]. Chemical Engineering Journal, 2013, 215‒216: 440‒448.

[67] Lee H J, Yoshimune M, Suda H. Gas permeation properties of poly(2,‍6-dimethyl-1,‍4-phenylene oxide) (PPO) derived carbon membranes prepared on a tubular ceramic support [J]. Journal of Membrane Science, 2006, 279(1‒2): 372‒379.

[68] Li L, Song C W, Jiang H W, et al. Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer [J]. Journal of Membrane Science, 2014, 450: 469‒477.

[69] Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets [J]. Nano Letters, 2008, 8(8): 2458‒2462.

[70] Liu G P, Jin W Q, Xu N P. Graphene-based membranes [J]. Chemical Society Reviews, 2015, 44(15): 5016‒5030.

[71] Koenig S P, Wang L D, Pellegrino J, et al. Selective molecular sieving through porous graphene [J]. Nature Nanotechnol, 2012, 7: 728‒732.

[72] Jiang D E, Cooper V R, Dai S. Porous graphene as the ultimate membrane for gas separation [J]. Nano Letters, 2009, 9(12): 4019‒4024.

[73] Li H, Song Z N, Zhang X J, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation [J]. Science, 2013, 342(6154): 95‒98.

[74] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials [J]. Small, 2010, 6(6): 711‒723.

[75] Kim H W, Yoon H W, Yoon S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes [J]. Science, 2013, 342(6154): 91‒95.

[76] Kim H W, Yoon H W, Yoo B M, et al. High-performance CO2-philic graphene oxide membranes under wet-conditions [J]. Chemical Communication, 2014, 50(88): 13563‒13566.

[77] Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis [J]. Journal of the American Chemical Society, 2009, 131(44): 16000‒16001.

[78] Liu Y Y, Ng Z F, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates [J]. Microporous and Mesoporous Materials, 2009, 118(1‒3): 296‒301.

[79] Guo H L, Zhu G S, Hewitt I J, et al. "Twin copper source" growth of metal-organic framework membrane Cu3(BTC)2 with high permeability and selectivity for recycling H2 [J]. Journal of the American Chemical Society, 2009, 131(5): 1646‒1647.

[80] Kang Z X, Xue M, Fan L, et al. "Single nickel source" in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties [J]. Chemical Communication, 2013, 49: 10569‒10571.

[81] Huang A S, Liu Q, Wang N Y, et al. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity [J]. Journal of the American Chemical Society, 2014, 136(42): 14686‒14689.

[82] Yoo Y, Lai Z P, Jeong H K. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth [J]. Microporous and Mesoporous Materials, 2009, 123(1‒3): 100‒106.

[83] Nan J P, Dong X L, Wang W J, et al. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous alpha-alumina support [J]. Langmuir, 2011, 27(8): 4309‒4312.

[84] Lee D J, Li Q M, Kim H, et al. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique [J]. Microporous and Mesoporous Materials, 2012, 163: 169‒177.

[85] Pandey P, Chauhan R S. Membranes for gas separation [J]. Progress in Polymer Science, 2001, 26(6): 853‒893.

[86] Freeman B D. Basis of permeability selectivity tradeoff relations in polymeric gas [J]. Macromolecules, 1999, 32(2): 375‒380.

[87] Vanherck K, Koeckelberghs G, Vankelecom I F J. Crosslinking polyimides for membrane applications: A review [J]. Progress in Polymer Science, 2013. 38(6): 874‒896.

[88] Low B T, Xiao Y, Chung T S. Amplifying the molecular sieving capability of polyimide membranes via coupling of diamine networking and molecular architecture [J]. Polymer, 2009, 50(14): 3250‒3258.

[89] Shao L, Lau C H, Chung T S. A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification [J]. International Journal of Hydrogen Energy, 2009, 34(20): 8716‒8722.

[90] Shao L, Liu L, Cheng S X, et al. Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport [J]. Journal of Membrane Science, 2008, 312(1‒2): 174‒185.

[91] Berchtold K A, Singh R P, Young J S, et al. Polybenzimidazole composite membranes for high temperature synthesis gas separations [J]. Journal of Membrane Science, 2012, 415‒416: 265‒270.

[92] Li X, Singh R P, Dudeck K W, et al. Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures [J]. Journal of Membrane Science, 2014, 461: 59‒68.

[93] Park H B, Jung C H, Lee Y M, et al. Polymers with cavities tuned for fast selective transport of small molecules and ions [J]. Science, 2007, 318(5848): 254‒258.

[94] Kim S, Lee Y M. Rigid and microporous polymers for gas separation membranes [J]. Progress in Polymer Science, 2015, 43: 1‒32.

[95] Han S H, Misdan N, Kim S. Thermally rearranged (TR) polybenzoxazole: Effects of diverse imidization routes on physical properties and gas transport behaviors [J]. Macromolecules, 2010, 43(18): 7657‒7667.

[96] Park C H, Tocci E, Kim S, et al. A simulation study on OH-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): Relationship between gas transport properties and free volume morphology [J]. Journal of Physical Chemistry B, 2014, 118(10): 2746‒2757.

[97] Goh P S, Ismail A F, Sanip S M, et al. Recent advances of inorganic fillers in mixed matrix membrane for gas separation [J]. Separation and Purification Technology, 2011, 81(3): 243‒264.

[98] Dong G X, Li H Y, Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation [J]. Journal of Materials Chemistry A, 2013, 1(15): 4610‒4630.

[99] Joly C, Goizet S, Schrotter J C, et al. Sol-gel polyimide-silica composite membrane gas transport properties [J]. Journal of Membrane Science, 1997, 130(1‒2): 63‒74.

[100] Sen D, Kalıpçılar H, Yilmaz L. Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes [J]. Journal of Membrane Science, 2007, 303(1‒2): 194‒203.

[101] Ordonez M J C, Balkus K J, Ferraris J P, et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes [J]. Journal of Membrane Science, 2010, 361(1‒2): 28‒37.

Related Research