Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 5 doi: 10.15302/J-SSCAE-2023.07.010

Scientific and Technological Issues for the Intelligent Management of Air Traffic

1. Key Laboratory of National Airspace Technology, Beijing 100085, China;
2. Independent Innovation Base of National Air Traffic Control Technology, Beijing 100028, China

Funding project:Chinese Academy of Engineering project “Strategic Research on the Intelligent Development of Air Traffic in China” (2022-XBZD-04) Received: 2022-10-27 Revised: 2022-12-25

Next Previous

Abstract

Air traffic is exhibiting the characteristics of large flow, strong coupling, and high time variation. To ensure its smooth, efficient, safe, and reliable operation, an intelligent model for air traffic management that features digitalization, automation, and collaboration needs to be developed. This study reviews the current and future demand for air traffic management and analyzes the challenges faced by traditional air traffic management from the aspects of traffic control, airspace management, and flow control. It also summarizes four basic scientific problems: interaction mechanism and mode between aircraft and air control infrastructure, air– ground coordinated control of aircraft intervals based on acceptable risks, airspace operation modeling and optimization considering multiple factors and based on non-uniform rules, and evolution mechanism and congestion propagation features of high-density air traffic flow. Moreover, it is suggested to integrate the application of satellite Internet, big data, digital twin, cloud computing, and other frontier technologies, and build an intelligent management technology system for air traffic from the aspects of aircraft, airspace, control decision-making, and operation, thereby laying a technical foundation for the construction of a next-eneration air traffic management system.

Figures

图1

图2

图3

图4

图5

图6

References

[ 1 ] International Air Transport Association.‍‍‍ Annual review 2021 [EB/OL].‍‍‍ (2022-01-15)‍[2022-08-15].‍‍‍ https://www.‍iata.‍org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2021.pdf. link1

[ 2 ] 王翔宇‍‍ . 城市空中交通市场发展前景分析 [J]‍. 航空动力 , 2019 4 : 18 ‒ 21 .
Wang X Y‍ . The future of urban air mobility market [J]‍. Aerospace Power , 2019 4 : 18 ‒ 21 .

[ 3 ] European Aviation Safety Agency‍. Notice of proposed amendment 2014-01: Carriage of special categories of passengers(SCPs)‍. (2011-01-01)[2022-07-03]‍. https://www.easa.europa.eu/sites/default/files/dfu/NPA%202014-01.pdf. link1

[ 4 ] 李诚龙 , 屈文秋 , 李彦冬 , 等‍ . 面向eVTOL航空器的城市空中运输交通管理综述 [J]‍. 交通运输工程学报 , 2020 , 20 4 : 35 ‒ 54 .
Li C L , Qu W Q , Li Y D , al e t ‍. Overview of traffic management of urban air mobilityUAM with eVTOL aircraft [J]‍. Joural of Traffic and Transportation Engineering , 2020 , 20 4 : 35 ‒ 54 .

[ 5 ] 张洪海 , 邹依原 , 张启钱 , 等‍‍ . 未来城市空中交通管理研究综述 [J]‍. 航空学报 , 2021 , 42 7 : 024638 .
Zhang H H , Zou Y Y , Zhang Q Q , al e t ‍. Future urban air mobility nanagement: Review [J]‍. Acta Aeronautica et Astronatutica Sinica , 2021 , 42 7 : 02463 .

[ 6 ] 吕人力‍ . 全球民用无人机融入空域战略与我国对策 [J]‍. 中国民用航空 , 2021 6 : 6 ‒ 10 .
L‍ Lyu R . The strategy of integrating civil UAS into airspace in the world and China´s countermeasures [J]‍. China Civil Aviation , 2021 6 : 6 ‒ 10 .

[ 7 ] 刘继新 , 江灏 , 董欣放 , 等‍ . 基于空中交通密度的进场航班动态协同排序方法 [J]‍. 航空学报 , 2020 , 41 7 : 323717 .
Liu J X , Jiang H , Dong X F , al e t ‍. Dynamic collaborative sequencing method for arrival flights based on air tracffic density [J]‍. Acta Aeronautica et Astronatutica Sinica , 2020 , 41 7 : 323717 .

[ 8 ] 陈雨童 , 胡明华 , 杨磊 , 等‍ . 受限航路空域自主航迹规划与冲突管理技术 [J]‍. 航空学报 , 2020 , 41 9 : 324045 .
Chen Y T , Hu M H , Yang L , al e t ‍. Autonomous trajector planning and conflict management technology in restricted air space [J]‍. Acta Aeronautica et Astronatutica Sinica , 2020 , 41 9 : 324045 .

[ 9 ] 李安醍 , 李诚龙 , 武丁杰‍ . 结合跳点引导的无人机随机搜索避撞决策方法 [J]‍. 航空学报 , 2020 , 41 8 : 323726 .
Li A T , Li C L , Wu D J . Collision avoid ancedecision method for UAVs inrandom search combined with jumppoint guidance [J]‍. Acta Aeronautica et Astronatutica Sinica , 2020 , 41 8 : 323726 .

[10] 张同荣 , 魏志强 , 时统宇 , 等‍ . 基于SPO的空地协同运行模式设计 [J]‍. 中国民航大学学报 , 2020 , 38 6 : 12 ‒ 17 .
Zhang T R , Wei Z Q , Shi T Y , al e t ‍. Air-ground cooperation mode design based on SPO [J]‍. Journal of Civil Aviation University of China , 2020 , 38 6 : 12 ‒ 17 .

[11] 朱晓辉 , 朱永文 , 王家隆 , 等‍ . 低空空域管理与飞行服务保障 [M]‍. 北京 : 国防工业出版社 , 2022 .
Zhu X H , Zhu Y W , Wang J L , al e t ‍. Low altitude airspace management and flight service support [M]‍. Beijing : National Defense Industry Press , 2022 .

[12] 全权 , 李刚 , 柏艺琴 , 等‍ . 低空无人机交通管理概览与建议 [J]‍. 航空学报 , 2020 , 41 1 : 023238 .
Quan Q , Li G , Bai Y Q , al e t ‍. Low altitude UAV traffic management:introductory overview and proposal [J]‍. Acta Aeronautica et Astronatutica Sinica , 2020 , 41 1 : 023238 .

[13] 张泽京 , 张曙光 , 柳旭 , 等‍ . 无人机系统安全目标水平预估方法 [J]‍. 航空动力学报 , 2018 , 33 4 : 1017 ‒ 1024 .
Zhang Z J , Zhang S G , Liu X , al e t ‍. Estimated method of target level of safety for unmanned aircraft system [J]‍. Journal of Aerospace Power , 2018 , 33 4 : 1017 ‒ 1024 .

[14] 赵嶷飞 , 郑雨欣‍ . 城市物流无人机飞行任务剖面构建与优化 [J]‍. 飞行力学 , 2021 , 39 3 : 54 ‒ 67 .
Zhao Y F , Zheng Y X‍ . Construction and optimization of flight mission profile of urban logistics UAV [J]‍. Flight Dynamics , 2021 , 39 3 : 54 ‒ 67 .

[15] 胡莘婷 , 吴宇‍ . 面向城市飞行安全的无人机离散型多路径规划方法 [J]‍. 航空学报 , 2021 , 42 6 : 324383 .
Hu X T , Wu Y‍ . Risk-based discrete multi-path planning method of UAVs in urban environments [J]‍. Acta Aeronautica et Astronatutica Sinica , 2021 , 42 6 : 324383 .

[16] 任新惠 , 岳一笛 , 尹晓丽 , 等‍ . 无人机车辆组合物流配送路径规划探讨 [J]‍. 飞行力学 , 2020 , 38 2 : 88 ‒ 94 .
Ren X H , Yue Y D , Yin X L , al e t ‍. Theoretical discussion on the logistics route planning problem of UAV and vehicle combination [J]‍. Flight Dynamics , 2020 , 38 2 : 88 ‒ 94 .

[17] 侯立国 , 张春晓 , 刘翠 , 等‍ . 面向民用飞机运行的健康管理系统设计 [J]‍. 武汉理工大学学报信息与管理工程版 , 2020 , 42 3 : 233 ‒ 238 .
Hou L G , Zhang C X , Liu C , al‍‍ et . Design of health management system for civil aircraft operation [J]‍. Journal of WuhanUniversity of TechnologyInformation Management Engineering , 2020 , 42 3 : 233 ‒ 238 .

[18] 刘杰 , 张军峰 , 朱海波 , 等‍ . 基于计划到达时刻的四维航迹规划 [J]‍. 航空计算技术 , 2016 , 46 4 : 44 ‒ 47 .
Liu J , Zhang J F , Zhu H B , al e t ‍. Four-dimension trajectory planning based on scheduled time of arrival [J]‍. Aeronatutical Computing Technique , 2016 , 46 4 : 44 ‒ 47 .

[19] 梁星星 , 冯旸赫 , 马扬多 , 等‍ . 多Agent深度强化学习综述 [J]‍. 自动化学报 , 2020 , 46 12 : 2537 ‒ 2557 .
Liang X X , Feng Y H , Ma Y D , al e t ‍. Deep multi-agent reinforcement learning: A survey [J]‍. Acta Automatica Sinica , 2020 , 46 12 : 2537 ‒ 2557 .

[20] 孙长银 , 穆朝絮‍ . 多智能体深度强化学习的若干关键科学问题 [J]‍. 自动化学报 , 2020 , 46 7 : 1301 ‒ 1312 .
Sun C Y , Mu C X‍ . Important scientific problems of multi-agent deep reinforcement learning [J]‍. Acta Automatica Sinica , 2020 , 46 7 : 1301 ‒ 1312 .

[21] 丁强 , 陶伟明‍ . 无人机协同四维航迹规划的改进Tau-H策略 [J]‍. 浙江大学学报工学版 , 2018 , 52 7 : 1398 ‒ 1405 .
Ding Q , Tao W M‍ . Improved Tau-H strategy for four-dimensional cooperative route planning of multi-UAVs [J]‍. Joural of Zhejiang UniversityEngineering Science , 2018 , 52 7 : 1398 ‒ 1405 .

[22] 蔡开泉 , 赵鹏‍ . 空中交通自主间隔管控技术研究 [J]. 南京航空航天大学学报 , 2022 , 54 4 : 688 ‒ 699 .
Cai K Q , Zhao P‍ . Key technologies on air traffic self-separation management [J]‍. Journal of Nanjing University of Aeronautics Astronautics , 2022 , 54 4 : 688 ‒ 699 .

[23] 陈志杰 , 汤锦辉 , 王冲 , 等‍ . 人工智能赋能空域系统, 提升空域分层治理能力 [J]‍. 航空学报 , 2021 , 42 4 : 525018 .
Chen Z J , Tang J H , Wang C , al e t ‍. Using artificial intelligengce in airspace system to improve airspace hierarchical governance capability [J]‍. Acta Aeronautica et Astronatutica Sinica , 2021 , 42 4 : 525018 .

Related Research