Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 4 doi: 10.15302/J-SSCAE-2023.07.023

Development Strategy for Aquatic Breeding Biotechnology

1. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Qingdao 266071, Shandong, China;

2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China;

3. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;

4. School of Life Sciences, Southwest University, Chongqing 400715, China;

5. College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China;

6. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China;

7. Chinese Academy of Fishery Sciences, Beijing 100141, China;

8. College of Life Sciences, Hunan Normal University, Changsha 410081, China

Funding project:Chinese Academy of Engineering project “Strategic Research on Promoting High-Quality Development of the Aquatic Seed Industry via Biotechnology” (2022-XY-97); Key Research and Development Program of Shandong Province (2023ZLYS02); Shandong Taishan Scholar Climbing Project Received: 2023-02-26 Revised: 2023-04-17 Available online: 2023-07-26

Next Previous

Abstract

Biotechnology is crucial for the sustainable development of the aquatic seed industry. Therefore, improving the innovation capability in aquatic breeding and making seed sources independent are significant for ensuring food security in China. This study summarizes the development status and problems of aquatic breeding in China and analyzes the status of research and application of seven types of biotechnology for aquatic breeding, namely, transgenic breeding, ploidy breeding, molecular-marker-assisted breeding, genomic selection breeding, genome editing breeding, molecular design breeding, and germline stem cell transplantation; future research and development demand for these technical fields in China is further analyzed. Moreover, future development goals and major tasks are suggested, including collecting, preserving, and accurately identifying excellent germplasm resources of aquatic organisms, profoundly analyzing the genetic basis and regulatory mechanism of critical traits, developing efficient and accurate breeding technologies, and achieving breakthroughs in the creation of new varieties. Furthermore, following suggestions are proposed: optimizing development policies of the aquatic seed industry, promoting technological innovation in aquatic breeding, establishing platforms for aquatic variety creation and transformation, and setting up special projects to accelerate technological innovation and development of the aquatic seed industry.

References

[ 1 ] Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture 2022, towards blue transformation [EB/OL]. (2022-06-29)‍[2023-02-05]. https://www.fao.org/3/cc0461en/online/cc0461en.html.‍ link1

[ 2 ] 农业农村部渔业渔政管理局 , 全国水产技术推广总站 , 中国水产学会‍‍ . 2022中国渔业统计年鉴 [M]‍. 北京 : 中国农业出版社 , 2022 ‍.
Bureau of Fisheries of the Ministry of Agriculture and Rural Affairs of the People´s Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries‍ . China fishery statistic yearbook 2022 [M]‍. Beijing : China Agriculture Press , 2022 ‍.

[ 3 ] Zhang G F, Fang X D, Guo X M, al et‍. The oyster genome reveals stress adaptation and complexity of shell formation [J]‍. Nature‍, 2012, 490: 49‒54‍.

[ 4 ] Chen S L, Zhan G J, Shao C W, al et‍. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle [J]‍. Nature Genetics‍, 2014, 46: 253‒260‍.

[ 5 ] Xu P, Zhang X F, Wang X M, al et‍. Genome sequence and genetic diversity of the common carp, Cyprinus carpio [J]‍. Nature Genetics, 2014, 46(11): 1212‒1219‍.

[ 6 ] Ao J Q, Mu Y N, Xiang L X, al et‍. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation [J]‍. PLoS Genetics‍, 2015, 11(4): e1005118‍.

[ 7 ] Wang Y P, Lu Y, Zhang Y, al et‍. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation [J]‍. Nature Genetics‍, 2015, 47: 625‒631‍.

[ 8 ] Shao C W, Bao B L, Xie Z Y, al et‍. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry [J]‍. Nature Genetics, 2017, 49(1): 119‒124‍.

[ 9 ] Wang S, Zhang J B, Jiao W Q, al et‍. Scallop genome provides insights into evolution of bilaterian karyotype and development [J]‍. Nature Ecology & Evolution, 2017, 1: 0120‍.

[10] Li Y L, Sun X Q, Hu X L, al et‍. Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins [J]‍. Nature Communication, 2017, 8(1): 1721‍.

[11] Shao C W, Li C, Wang N, al et‍. Chromosome-level genome assembly of the spotted sea bass, Lateolabrax maculatus [J]‍. GigaScience‍, 2018, 7(11): 114‍.

[12] Zhang X J, Yuan J B, Sun Y M, al et‍. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting [J]‍. Nature Communication‍, 2019, 10: 356‍.

[13] Tang B P, Wang Z K, Liu Q N, al et‍. High-quality genome assembly of Eriocheir japonica sinensis reveals its unique genome evolution [J]‍. Frontiers in Genetics‍, 2020, 10: 1340‍.

[14] Tang B P, Zhang D Z, Li H R, al et‍. Chromosome-level genome assembly reveals the unique genome evolution of the swimming crab (Portunus trituberculatus) [J]‍. GigaScience, 2020, 9(1): 161‍.

[15] Zhang X J, Sun L N, Yuan J B, al et‍. The sea cucumber genome provides insights into morphological evolution and visceral regeneration [J]‍. PLoS Biology, 2017, 15: e2003790‍.

[16] Ye N H, Zhang X W, Miao M, al et‍. Saccharina genomes provide novel insight into kelp biology [J]‍. Nature Communication, 2015, 6: 6986‍.

[17] 陈松林 , 徐文腾 , 刘洋‍ . 鱼类基因组研究十年回顾与展望 [J]‍. 水产学报‍ . 2019 , 43 1 : 1 ‒ 14 ‍.
Chen S L , Xu W T , Liu Y‍ . Fish genomic research: Decade review and prospect [J]‍. Journal of Fisheries of China‍ , 2019 , 43 1 : 1 ‒ 14 ‍.

[18] Li J T, Wang Q, Huang Yang M D, al et‍. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish [J]‍. Nature Genetics, 2021, 53: 1493‒1503‍.

[19] Wang Y, Li X Y, Xu W J, al et‍. Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish [J]‍. Nature Ecology & Evolution, 2022, 6: 1354‒1366‍.

[20] Liu S J, Luo J, Chai J, al et‍. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross [J]‍. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 1327‒1332‍.

[21] Chen S L, Li J, Deng S P, al et‍. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis) [J]‍. Marine Biotechnology‍, 2007, 9(2): 273‒280‍.

[22] Wang D, Mao H L, Chen H X, al et‍. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations [J]‍. Animal Genetics‍, 2009, 40: 978‒981‍.

[23] Chen J J, Wang Y L, Yue Y Y, al et‍. A novel male-specific DNA sequence in the common carp, Cyprinus carpio [J]‍. Molecular and Cellular Probes‍, 2009, 23(5): 235‒239‍.

[24] Ma H Y, Chen S L, Yang J F, al et‍. Isolation of sex-specific AFLP markers in spotted halibut (Verasper variegatus) [J]‍. Environmental Biology of Fishes, 2010, 88: 9‒14‍.

[25] 王德寿 , 孙运侣 , 曾圣 , 等‍ . 尼罗罗非鱼性染色体特异分子标记及遗传性别鉴定方法 : CN101962641B [P]‍. 2013-06-05 ‍.
Wang D S , Sun Y L , Zeng S , al e t ‍. Method for identifying sex chromosome-specific molecular marker and genetic gender in Nile tilapia : CN101962641B [P]‍. 2013-06-05 ‍.

[26] Ou M, Yang C, Luo Q, al et‍. An NGS-based approach for the identification of sex-specific markers in snakehead (Channa argus) [J]‍. Oncotarget‍, 2017, 8(58): 98733‒98744‍.

[27] 王志勇 , 林爱强 , 肖世俊‍ . 一种鉴别大黄鱼遗传性别的分子标记及其应用 : CN107236814A [P]‍. 2017-10-10 ‍.
Wang Z Y , Lin A Q , Xiao S J‍ . A molecular marker for identifying genetic gender and its application in large yellow croaker : CN107236814A [P]‍. 2017-10-10 ‍.

[28] Liu H Y, Pang M X, Yu X M, al et‍. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination system in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix) [J]‍. DNA Research‍, 2018, 25(3): 247‒264‍.

[29] 周云红 , 葛婉仪 , 夏星 , 等‍ . 鳜雌雄表型差异及性别相关标记筛选 [J]‍. 安徽农业大学学报 , 2020 , 47 1 : 30 ‒ 35 ‍.
Zhou Y H , Ge W Y , Xia X , al e t ‍. Phenotypic difference between the males and females and screening the sex-specific molecular marker in Siniperca chuatsi [J]‍. Journal of Anhui Agricultural University , 2020 , 47 1 : 30 ‒ 35 ‍.

[30] Dou J, Li X, Fu Q, al et‍. Evaluation of the 2b-RAD method for genomic selection in scallop breeding [J]‍. Scientific Reports, 2016, 6: 19244‍.

[31] Liu Y, Lu S, Liu F, al et‍. Genomic selection using BayesCπ and GBLUP for resistance against Edwardsiella tarda in Japanese flounder (Paralichthys olivaceus) [J]‍. Marine Biotechnology‍, 2018, 20(5): 559‒565‍.

[32] Lu S, Liu Y, Yu X J, al et‍. Prediction of genomic breeding values based on pre‑selected SNPs using ssGBLUP, WssGBLUP and BayesB for edwardsiellosis resistance in Japanese flounder [J]‍. Genetics Selection Evolution, 2020, 52: 49‍.

[33] Lu S, Zhou Q, Chen Y D, al et‍. Development of a 38 K single nucleotide polymorphism array and application in genomic selection for resistance against Vibrio harveyi in Chinese tongue sole, Cynoglossus semilaevis [J]‍. Genomics‍, 2021, 113(4): 1838‒1844‍.

[34] Dong L S, Xiao S J, Chen J W, al et‍. Genomic selection using extreme phenotypes and pre-selection of SNPs in large yellow croaker (Larimichthys crocea) [J]‍. Marine Biotechnology‍, 2016, 18: 575‒583‍.

[35] Dong L S, Xiao S J, Wang Q R, al et‍. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea) [J]‍. BMC Genomics, 2016, 17: 460‍.

[36] Zhou J, Bai H Q, Ke Q Z, al et‍. Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker [J]‍. Aquaculture, 2021, 531: 735786‍.

[37] Bai Y L, Wang J Y, Zhao J, al et‍. Genomic selection for visceral white-nodules diseases resistance in large yellow croaker [J]‍. Aquaculture, 2022, 559: 738421‍.

[38] Lu S, Zhu J J, Du X, al et‍. Genomic selection for resistance to Streptococcus agalactiae in GIFT strain of Oreochromis niloticus by GBLUP, wGBLUP, and BayesCπ [J]‍. Aquaculture‍, 2020, 523: 735212‍.

[39] Liu J Y, Peng W Z, Yu F, al et‍. Genomic selection applications can improve the environmental performance of aquatics: A case study on the heat tolerance of abalone [J]‍. Evolutionary Applications, 2022, 15(6): 992‒1001‍.

[40] Xu J, Zhao Z X, Zhang X F, al et‍. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio) [J]‍. BMC Genomics, 2014, 15: 307‍.

[41] Zhou Q, Chen Y D, Lu S, al et‍. Development of a 50K SNP array for Japanese flounder and its application in genomic selection for disease resistance [J]‍. Engineering‍, 2021, 7(3): 406‒411‍.

[42] Zhou T, Chen B H, Ke Q Z, al et‍. Development and evaluation of a high-throughput single-nucleotide polymorphism array for large yellow croaker (Larimichthys crocea) [J]‍. Frontiers in Genetics, 2020, 11: 571751‍.

[43] Qi H G, Song K, Li C Y, al et‍. Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas) [J]‍. PLoS One‍, 2017, 12(3): e0174007‍.

[44] Lv J, Jiao W Q, Guo H B, al et‍. HD-Marker: A highly multiplexed and flexible approach for targeted genotyping of more than 10, 000 genes in a single-tube assay [J]‍. Genome Research, 2018, 28(12): 1919‒1930‍.

[45] Wang J Y, Miao L W, Chen B H, al et‍. Development and evaluation of liquid SNP array for large yellow croaker (Larimichthys crocea) [J]‍. Aquaculture, 2023, 563(4): 739021‍.

[46] Li M H, Yang H H, Zhao J E, al et‍. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9 [J]‍. Genetics‍, 2014, 197(2): 591‒599‍.

[47] Cui Z K, Liu Y, Wang W W, al et‍. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis) [J]‍. Scientific Reports‍, 2017, 7: 42213‍.

[48] Gui T S, Zhang J Q, Song F G, al et‍. CRISPR/Cas9-mediated genome editing and mutagenesis of EcChi4 in Exopalaemon carinicauda [J]‍. G3 Genes, Genomes, Genetics‍, 2016, 6(11): 3757‒3764‍.

[49] 陈松林 , 王德寿 , 匡友谊 , 等‍ . 中国鱼类基因组编辑育种研究现状及存在问题与展望 [J]‍. 水产学报 , 2023 , 47 1 : 13 ‒ 26 ‍.
Chen S L , Wang D S , Kuang Y Y , al e t ‍. Fish genome editing breeding in China: Status, problems and prospects [J]‍. Journal of Fisheries of China , 2023 , 47 1 : 13 ‒ 26 ‍.

[50] 朱作言 , 许克圣 , 谢岳峰 , 等‍ . 转基因鱼模型的建立 [J]‍. 中国科学B辑 化学 生命科学 地学‍ , 1989 , 19 2 : 147 ‒ 155 ‍.
Zhu Z Y , Xu K S , Xie Y F , al e t ‍. Establishment of transgenic fish model [J]‍. Science in China Series B‒Chemistry , Life Sciences Earth Sciences‍, 1989 , 19 2 : 147 ‒ 155 ‍.

[51] 张成合 , 宋长志 , 王淑芳‍ . 多倍体育种综述 [J]‍. 河北农业大学学报‍ , 1988 2 : 136 ‒ 139 ‍.
Zhang C H , Song C Z , Wang S F‍ . Review of polyploid breeding [J]‍. Journal of Heibei Agricultural University , 1988 2 : 136 ‒ 139 ‍.

[52] P‍ Otto S. The evolutionary consequences of polyploidy [J]‍. Cell‍, 2007, 131(2): 452‒462‍.

[53] Liu S J‍. Distant hybridization leads to different ploidy fishes [J]‍. Science China Life Sciences, 2010, 53(4): 416‒425‍.

[54] Thoraard G H, Jazwin M E, R‍ Stier A. Polyploidy induced by heat shock in rainbow trout [J]‍. Transactions of the American Fisheries Society, 1981, 110: 546‒550‍.

[55] Yang X Q, Chen M R, Yu X M, al et‍. Biological characters and growth rates of diploid and triploid Japanese phytophagous crucian carp (JPCC) [J]‍. Aquaculture‍, 1993, 111(1‒4): 320‒321‍.

[56] Refstie T‍. Tetraploid rainbow trout produced by cytochalasin B [J]‍. Aquaculture‍, 1981, 25(1): 51‒58‍.

[57] Bidwell C A, Chfisman C L, Libey G‍. Polyploidy induced by heat shock in channel catfish [J]‍. Aquaculture, 1985, 51(1): 25‒32‍.

[58] Chourrout D, Chevassus B, Krieg F, al et‍. Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females—Potential of tetraploid fish [J]‍. Theoretical and Applied Genetics‍, 1986, 72: 193‒206‍.

[59] Chourrout D, Nakayama I‍. Chromosome studies of progenies of tetraploid female rainbow trout [J]‍. Theoretical and Applied Genetics, 1987, 74(6): 687‒692‍.

[60] Liu S J, Qin Q B, Xiao J, al et‍. The Formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance [J]‍. Genetics, 2007, 176: 1023‒1034‍.

[61] Devlin R H, Mcneil B K, Groves T, al et‍. Isolation of a Y-chromosomal DNA probe capable of determining genetic sex in chinook salmon (Oncorhynchus tshawytscha) [J]‍. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48: 1606‒1612‍.

[62] 刘洋 , 陈松林 , 高峰涛 , 等‍ . 半滑舌鳎性别特异微卫星标记的SCAR转化及其应用 [J]‍. 农业生物技术学报‍ , 2014 , 22 6 : 787 ‒ 792 ‍.
Liu Y , Chen S L , Gao F T , al e t ‍. SCAR-transformation of sex-specific SSR marker and its application in half-smooth tongue sole Cynoglossus semiliaevis [J]‍. Journal of Agriculture Biotechnology , 2014 , 22 6 : 787 ‒ 792 ‍.

[63] Fuji K, Kobayashi K, Hasegawa O, al et‍. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus) [J]‍. Aquaculture‍, 2006, 254: 203‒210‍.

[64] Fuji K, Hasegawa O, Honda K, al et‍. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus) [J]‍. Aquaculture, 2007, 272(1‒4): 291‒295‍.

[65] Houston R, Haley C, Hamilton A, al et‍. The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL [J]‍. Heredity, 2010, 105: 318‍‒327.

[66] Moen T, Torgersen J, Santi N, al et‍. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon [J]‍. Genetics‍, 2015, 200(4): 1313‒1326‍.

[67] Liu S X, Vallejo R L, Evenhuis J P, al et‍. Retrospective evaluation of marker-assisted selection for resistance to bacterial cold water disease in three generations of a commercial rainbow trout breeding population [J]‍. Frontiers in Genetics‍, 2018, 9: 286‍.

[68] Meuwissen T H E, Hayes B J, E‍ Goddard M. Prediction of total genetic value using genome-wide dense marker maps [J]‍. Genetics, 2001, 157(4): 1819‒1829‍.

[69] Ødegård J, Moen T, Santi N, al et‍. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar) [J]‍. Frontiers in Genetics‍, 2014, 5: 402‍.

[70] Tsai H Y, Hamilton A, Tinch A E, al et‍. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array [J]‍. BMC Genomics‍, 2015, 16: 969‍.

[71] Gutierrez A P, Matika O, Bean T P, al et‍. Genomic selection for growth traits in Pacific oyster (Crassostrea gigas): Potential of low-density marker panels for breeding value prediction [J]‍. Frontiers in Genetics‍, 2018, 9: 391‍.

[72] Vallejo R L, Leeds T D, Fragomeni B O, al et‍. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: Insights on genotyping methods and genomic prediction models [J]‍. Frontiers in Genetics, 2016, 7: 96‍.

[73] Bangera R, Correa K, Lhorente J P, al et‍. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonisin Atlantic salmon (Salmo salar) [J]‍. BMC Genomics, 2017, 18(1): 121‍.

[74] Wang Q C, Yang Y, Li F H, al et‍. Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp Litopenaeus vannamei [J]‍. Chinese Journal of Oceanology and Limnology, 2017, 35: 1221‒1229‍.

[75] Houston R D, Taggart J B, Cézard T, al et‍. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)‍ [J]‍. BMC Genomics‍, 2014, 15: 90‍.

[76] Correa K, Lhorente J P, López M E, al et‍. Genome-wide association analysis reveals loci associated with resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L‍.) chromosomes [J]‍‍. BMC Genomics, 2015, 16: 854‍.

[77] Palti Y, Gao G, Liu S, al et‍. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout [J]‍‍‍. Molecular Ecology Resources, 2015, 15(3): 662‒672‍.

[78] Liu P P, Lv J, Ma C, al et‍. Targeted genotyping of a whole-gene repertoire by an ultrahigh-multiplex and flexible HD-marker approach [J]‍. Engineering‍, 2022, 13(12): 186‒196‍.

[79] Porteus M H, Carroll D‍. Gene targeting using zinc finger nucleases [J]‍. Nature Biotechnology‍, 2005, 23(8): 967‒973‍.

[80] Boch J, Scholze H, Schornack S, al et‍. Breaking the code of DNA binding specificity of TAL-type III effectors [J]‍. Science‍, 2009, 326(5959): 1509‒1512‍.

[81] Cong L, Ran F A, Cox D, al et‍. Multiplex genome engineering using CRISPR/Cas systems [J]‍. Science‍, 2013, 339(6121): 819‒823‍.

[82] Wargelius A, Leininger S, Skaftnesmo K O, al et‍. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon [J]‍. Scientific Reports, 2016, 6: 21284‍.

[83] Li M H, Yang H H, Li M R, al et‍. Antagonistic roles of dmrt1 and foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs [J]‍. Endocrinology‍, 2013, 154(12): 4814‒4825‍.

[84] Cleveland B M, Yamaguchi G, Radler L M, al et‍. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss) [J]‍. Scientific Reports, 2018, 8(1): 16054‍.

[85] Bao L S, Tian C X, Liu S K, al et‍. The Y chromosome sequence of the channel catfish suggests novel sex determination mechanisms in teleost fish [J]‍. BMC Biology‍, 2019, 17(1): 6‍.

[86] Gan R H, Wang Y, Li Z, al et‍. Functional divergence of multiple duplicated foxl2 homeologs and alleles in a recurrent polyploid fish [J]‍. Molecular Biology and Evolution‍, 2021, 38(5): 1995‒2013‍.

[87] Wang M T, Li Z, Ding M, al et‍. Two duplicated gsdf homeologs cooperatively regulate male differentiation by inhibiting cyp19a1a transcription in a hexaploid fish [J]‍. PLoS Genetics‍, 2022, 18: e1010288‍.

[88] Higuchi K, Kazeto Y, Ozaki Y, al et‍. Targeted mutagenesis of the ryanodine receptor by Platinum TALENs causes slow swimming behaviour in Pacific bluefin tuna (Thunnus orientalis) [J]‍. Scientific Reports‍, 2019, 9: 13871‍.

[89] Kim J, Cho J Y, Kim J W, al et‍. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus [J]‍. Aquaculture, 2019, 512: 734336‍.

[90] Wang L, Tan X G, Wu Z H, al et‍. Targeted mutagenesis in the olive flounder (Paralichthys olivaceus) using the CRISPR/Cas9 system with electroporation [J]‍. Biologia‍, 2021, 76: 1297‒1304‍.

[91] Ohama M, Washio Y, Kishimoto K, al et‍. Growth performance of myostatin knockout red sea bream Pagrus major juveniles produced by genome editing with CRISPR/Cas9 [J]‍. Aquaculture, 2020, 529: 735672‍.

[92] Yu H, Li H J, Li Q, al et‍. Targeted gene disruption in Pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes [J]‍. Marine Biotechnology, 2019, 21(3): 301‒309‍.

[93] Li M H, Feng R J, Ma H, al et‍. Retinoic acid triggers meiosis initiation via stra8-dependent pathway in Southern catfish, Silurus meridionalis [J]‍. General and Comparative Endocrinology‍, 2016, 232: 191‒198‍.

[94] Kawamura W, Hasegawa N, Yamauchi A, al et‍. Production of albino chub mackerel (Scomber japonicus) by slc45a2 knockout and the use of a positive phototaxis-based larviculture technique to overcome the lethal albino phenotype [J]‍. Aquaculture, 2022, 560: 738490‍.

[95] Japan embraces CRISPR-edited fish [J]‍. Nature Biotechnology, 2022, 40: 10‍.

[96] Brinster R L, W‍ Zimmermann J. Spermatogenesis following male germ-cell transplantation [J]‍. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 11298‒11302‍.

[97] 贾天玉 , 刘龙会 , 沈豪飞 , 等‍ . 生殖干细胞的研究进展 [J]‍. 国际生殖健康计划生育杂志 , 2019 , 38 3 : 222 ‒ 225 ‍.
Jia T Y , Liu L H , Shen H F , al e t ‍. Research progress of germline stem cells [J]‍. Journal of International Reproductive HealthFamily Planning‍ , 2019 , 38 3 : 222 ‒ 225 ‍.

[98] Ciruna B, Weidinger G, Knaut H, al et‍. Production of maternal-zygotic mutant zebrafish by germ-line replacement [J]‍. Proceedings of the National Academy of Sciences of the United States of America, 2022, 99(23): 14919‒14924‍.

[99] Takeuchi Y, Yoshizaki G, Takeuchi T‍. Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout [J]‍. Biology of Reproduction, 2003, 69(4): 1142‒1149‍.

[100] Okutsu T, Shikina S, Kanno M, al et‍. Production of trout offspring from triploid salmon parents [J]‍. Science, 2007, 317(5844): 1517‍.

[101] Ye H, Li C J, Yue H M, al‍ er. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis [J]‍. Theriogenology‍, 2017, 94: 37‒47‍.

[102] Zhang F H, Hao Y K, Li X M, al et‍. Surrogate production of genome-edited sperm from a different subfamily by spermatogonial stem cell transplantation [J]‍. Science China Life Sciences‍, 2022, 65(5): 969‒987‍.

[103] Zhou L, Wang X Y, Liu Q H, al et‍. Successful spermatogonial stem cells transplantation within pleuronectiformes: First breakthrough at inter-family level in marine fish [J]‍. International Journal of Biological Sciences‍, 2021, 17(15): 4426‒4441‍.

[104] 朱作言 , 胡炜‍ . 转基因鱼及其安全性 [J]‍. 科学 , 2017 , 69 6 : 25 ‒ 27, 4 ‍.
Zhu Z Y , Hu W‍ . Transgenic fish and its biosafety [J]‍. Science , 2017 , 69 6 : 25 ‒ 27, 4 ‍‍.

[105] Qin P, Lu H W, Du H L, al et‍. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations [J]‍. Cell‍, 2021, 184(13): 3542‒3558, e16‍.

[106] Gui S T, Wei W J, Jiang C L, al et‍. A pan-Zea genome map for enhancing maize improvement [J]‍. Genome Biology, 2022, 23: 178‍.

[107] Zhou Y, Zhang Z Y, Bao Z G, al et‍. Graph pangenome captures missing heritability and empowers tomato breeding [J]‍. Nature, 2022, 606: 527‒534‍.

[108] Talenti A, Powell J, Hemmink J D, al et‍. A cattle graph genome incorporating global breed diversity [J]‍. Nature Communications, 2022, 13: 910‍.

[109] Tian X M, Li R, Fu W W, al et‍. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data [J]‍. Science China Life Science, 2020, 63: 750‒763‍.

Related Research