期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2020年 第22卷 第3期 doi: 10.15302/J-SSCAE-2020.03.004

几种新体制半导体激光器及相关产业的现状、挑战和思考

1.中国科学院半导体研究所,北京100083;

2.中国科学院大学材料科学与光电技术学院,北京 100049

资助项目 :中国工程院咨询项目“我国激光技术与应用2035 发展战略研究”(2018-XZ-27) 收稿日期: 2020-03-26 修回日期: 2020-04-10

下一篇 上一篇

摘要

半导体激光器产业体量大、辐射和带动能力强,作为激光器工业的基础,被广泛应用在光通信、光信息处理、新型加工、激光显示、生物和医学传感等工业、军事和消费生活领域。为了适应逐渐扩大的应用范围,满足不同应用场景所提出的新要求,半导体激光器领域近年来通过学科交叉渗透不断地引入了各种新机制、新概念以及新结构,大大优化了其波长覆盖范围、光束质量、器件体积和功耗、调制速度以及输出功率。本文通过对比几种新型激光器的物理内涵、结构设计及制备手段,介绍了几种应用前景广泛且发展势头强劲的半导体激光器。结合我国相关产业的发展现状指出,半导体激光器产业的发展仍然应与应用紧密结合,通过市场和强大的系统开发能力闭环优化器件性能,提升核心技术,通过交叉学科融通不断引入新概念、新结构和新工艺。同时,结合国内政策导向优势,在垂直外腔面发射激光器、微纳结构激光器以及拓扑绝缘体激光器等几个发展势头强劲的新型激光技术中加大投入,进行批量生产和可控制备研发,力争在国际相关领域的竞争中抢占战术制高点。

图片

图1

图2

参考文献

[ 1 ] Yushi K, Yarborough J M, Li L, et al. Continuous-wave all-solidstate 244 nm deep ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator [J]. Optics Letters, 2008, 33(15): 1705–1707. 链接1

[ 2 ] Bondaz T A G, Lawrain A, Moloney J V, et al. Generation and stabilization of continuous-wave THz emission from a bi-color VECSEL [J]. IEEE Photonics Technology Letters, 2019, 31(19): 1569–1572. 链接1

[ 3 ] Heinen B, Wang T L, Sparenberg M, et al. 106 W continuouswave output power from vertical-external-cavity surface-emitting laser [J]. Electronics Letters, 2012, 48(9): 516–517. 链接1

[ 4 ] Wilcox K G, Quarterman A H, Apostolopoulos V, et al. 175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser [J]. Optics Express, 2012, 20(7): 7040–7045. 链接1

[ 5 ] Quarterman A H, Wilcox K G, Apostolopoulos V, et al. A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses [J]. Nature Photonics, 2009, 3(12): 729–731. 链接1

[ 6 ] Kantola E, Leinonen T, Ranta S, et al. High-efficiency 20 W yellow VECSEL [J]. Optics Express, 2014, 22(6): 6372–6380. 链接1

[ 7 ] Hermann P K, Nechay K, Penttinen J. AlGaAs-based verticalexternal-cavity surface-emitting laser exceeding 4 W of direct emission power in the 740–790 nm spectral range [J]. Optics Letters, 2018, 43(7): 1578. 链接1

[ 8 ] Wilcox K G , Tropper A C , Beere H E , et al. 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation [J]. Optics Express, 2013, 21(2): 1599–1605. 链接1

[ 9 ] Heinen B, Wang T L, Sparenberg M, et al. 106 W continuouswave output power from vertical-external-cavity surface-emitting laser [J]. Electronics Letters, 2012, 48(9): 516–517. 链接1

[10] Hou G Y, Shu S, Shi S Z, et al. High power (>27 W) semiconductor disk laser based on pre-metalized diamond heatspreader [J]. IEEE Photonics Journal, 2019, 11(2) 1–8. 链接1

[11] Klopp P, Griebner U, Zorn M, et al. Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser [J]. Applied Physics Letters, 2011, 98(7): 1–3. 链接1

[12] Rantamäki A, Rautiainen J, Sirbu A, et al. 1.56μm 1 watt single frequency semiconductor disk laser [J]. Optics Express, 2013, 21(2):2355–2360. 链接1

[13] Kaspar S, Rattunde M, Tino Töpper, et al. Linewidth narrowing and power scaling of single-frequency 2.X μm GaSb-based semiconductor disk lasers [J]. IEEE Journal of Quantum Electronics, 2013, 49(3): 314. 链接1

[14] Hill M T, Yok-siang O, Barry S, et al. Lasing in metallic-coated nanocavities [J]. Nature Photonics, 2007, 1: 589–594. 链接1

[15] Li Y Z, Zhang J X, Huang D, et al. Room-temperature continuouswave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity [J]. Nature Nanotech nology, 2017, 12: 987–992. 链接1

[16] Harari G, Bandres M A, Lumer Y, et al. Topological Insulator Laser: Theory [J]. Science, 2018, 359(6381): 1–6. 链接1

[17] Bandres M A, Wittek S, Harari G, et al. Topological insulator laser: Experiments [J]. Science, 2018, 359(6381): 1–5. 链接1

[18] Shao Z K, Chen H Z, Wang S, et al. A high-performance topological bulk laser based on band-inversion-induced reflection [J]. Nature Nanotechnology, 2020, 15(1): 67–72. 链接1

[19] Guo R, Necada M, Hakala T K, et al. Lasing at K Points of a honeycomb plasmonic lattice [J]. Physical Review Letters, 2019, 122(1): 1–6. 链接1

[20] Wu J S, Apalkov V, Stockman M I. Topological spaser [J]. Physical Review Letters, 2020, 124: 1–6. 链接1

[21] Zeng Y Q, Chattopadhyay U, Zhu B F, et al. Electrically pumped topological laser with valley edge modes [J]. Nature, 2020, 578: 246–250. 链接1

[22] 中国科学院武汉文献情报中心, 中国激光杂志社, 中国光学学 会. 中国激光产业发展报告2019 [R]. 武汉: 中国科学院武汉文 献情报中心, 中国激光杂志社, 中国光学学会, 2019. Wuhan Library, Chinese Academy of Sciences, Chinese Jouranl of Lasers, the Chinese Optical Society. Annual report on Chinese laser industry refined edition 2019 [R]. Wuhan: Wuhan Library, Chinese Academy of Sciences, Chinese Jouranl of Lasers, the Chinese Optical Society, 2019.
Wuhan Library, Chinese Academy of Sciences, Chinese Journal of Lasers, the Chinese Optical Society. Annual report on Chinese laser industry refined edition 2019 [R]. Wuhan: Wuhan Library, Chinese Academy of Sciences, Chinese Journal of Lasers, the Chinese Optical Society, 2019. Chinese.

相关研究