期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2020年 第22卷 第6期 doi: 10.15302/J-SSCAE-2020.06.005

海洋天然气水合物开采技术与装备发展研究

1. 中海油研究总院有限责任公司,北京 100028
2. 西南石油大学机电工程学院,成都 610500

资助项目 :中国工程院咨询项目“海洋装备发展战略研究”(2020-ZD-02);中国工程院咨询项目“面向2035 海洋能源开发及核心技术战略研究”(2020-ZD-13) 收稿日期: 2020-09-27 修回日期: 2020-11-09 发布日期: 2020-12-14

下一篇 上一篇

摘要

天然气水合物尤其是海洋天然气水合物是有望替代传统化石能源的一种新型清洁非常规能源,全球储量丰富,目前对其开采仍处于研究阶段,商业化、规模化开采面临诸多技术与装备挑战。本文针对现有水合物开采方法,围绕日本和我国的海洋天然气试采工程案例,对降压和固态流化法两种试采模式涉及的关键技术和工艺进行了分析;综合国内外相关技术与装备的发展现状,提出了适合我国储层与装备技术的海洋天然气水合物开采的发展思路及对策建议。研究发现,在以深海采矿车、疏松浅表层双梯度钻井技术等为代表,用于水合物 – 油气 – 海底金属矿开采的通用关键技术装备领域,我国的整体水平落后于国外;在以防砂技术装备、浅层水合物开采的预斜导向钻进技术、“三气合采”技术装备等为代表的专用关键技术装备领域,我国综合水平与国际先进水平相当,但仍然距商业化开采技术装备需求较远。面向 2035 年,我国海洋天然气水合物开采技术与装备发展的战略目标为进入全面领跑阶段,建立商业化开发的工程装备体系。研究建议,从国家层面制定海洋天然气水合物开发技术与装备研发计划,推动水合物的商业化开发进程,开展海洋非成岩水合物开采专用和通用技术装备的研发及应用。

图片

图 1

图 2

参考文献

[ 1 ] Sakurai S, Nishioka I, Matsuzawa M, et al. Issues and challenges with controlling large drawdown in the first offshore methane-hydrate production test [J]. SPE Production & Operations, 2017, 32(4): 500-516.
Sakurai S, Nishioka I, Matsuzawa M, et al. Issues and challenges with controlling large drawdown in the first offshore methanehydrate production test [J]. SPE Production & 516.-Operations, 2017, 32(4): 500 链接1

[ 2 ] 张金华, 方念乔, 魏伟, 等. 天然气水合物成藏条件与富集控制因素 [J]. 中国石油勘探, 2018, 23(3): 35-46. Zhang J H, Fang N Q, Wei W, et al. Accumulation conditions and enrichment controlling factors of natural gas hydrate reservoirs [J]. China Petroleum Exploration, 2018, 23(3): 35-46.
Zhang J H, Fang N Q, Wei W, et al. Accumulation conditions and enrichment controlling factors of natural gas hydrate 46. Chinese.-reservoirs [J]. China Petroleum Exploration, 2018, 23(3): 35 链接1

[ 3 ] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges [J]. Applied Energy, 2016, 162: 1633-1652.
Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges [J]. 1652.-Applied Energy, 2016, 162: 1633 链接1

[ 4 ] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制 因素和科学挑战 [J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11. Wu N Y, Huang L, Hu G W, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine geology and Quaternary Geology, 2017, 37(5): 1-11.
Wu N Y, Huang L, Hu G W, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation 11. Chinese.-[J]. Marine geology and Quaternary Geology, 2017, 37(5): 1 链接1

[ 5 ] 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态 流化试采技术研究及进展 [J]. 中国海上油气, 2017, 29(4): 1-8. Zhou S W, Chen W, Li Q P, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area [J]. China Offshore Oil and Gas, 2017, 29(4): 1-8.
Zhou S W, Chen W, Li Q P, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic 8. Chinese.-natural gas hydrate in deep water area [J]. China Offshore Oil and Gas, 2017, 29(4): 1 链接1

[ 6 ] 张旭辉, 鲁晓兵. 一种新的海洋浅层水合物开采法——机械-热 联合法 [J]. 力学学报, 2016, 48(5): 1238-1246. Zhang X H, Lu X B. A new exploitation method for gas hydrate in shallow stratum: Mechanical-thermal method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1238-1246.
Zhang X H, Lu X B. A new exploitation method for gas hydrate in shallow stratum: Mechanical-thermal method [J]. Chinese 1246. Chinese.-Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1238 链接1

[ 7 ] 张卫东, 刘永军, 任韶然, 等. 天然气水合物注热开采能量分析 [J]. 天然气工业, 2008 (5): 77-79. Zhang W D, Liu Y J, Ren S R, et al. Thermal analysis on heat injection to natural gas hydrate (NGH) recovery [J]. Natural Gas Industry, 2008 (5): 77-79.
Zhang W D, Liu Y J, Ren S R, et al. Thermal analysis on heat injection to natural gas hydrate (NGH) recovery [J]. Natural Gas 79. Chinese.-Industry, 2008 (5): 77 链接1

[ 8 ] 李淑霞, 李杰, 曹文. 注热水盐度对水合物开采影响的实验研究 [J]. 高校化学工程学报, 2015, 29(2): 482-486. Li S X, Li J, Cao W. Experimental studies on the effects of hot brine salinity on gas hydrate production [J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2): 482-486.
Li S X, Li J, Cao W. Experimental studies on the effects of hot brine salinity on gas hydrate production [J]. Journal of Chemical 486. Chinese.-Engineering of Chinese Universities, 2015, 29(2): 482 链接1

[ 9 ] 张旭辉, 鲁晓兵, 李鹏. 天然气水合物开采方法的研究综述 [J]. 中国科学: 物理学 力学 天文学, 2019, 49(3): 38-59. Zhang X H, Lu X B, Li P. A comprehensive review in natural gas hydrate recovery methods [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49(3): 38-59.
Zhang X H, Lu X B, Li P. A comprehensive review in natural gas hydrate recovery methods [J]. SCIENTIA SINICA Physica, Mechanica & 59. Chinese.-Astronomica, 2019, 49(3): 38 链接1

[10] 张学民, 李金平, 吴青柏, 等. CO2置换天然气水合物中CH4的研 究进展 [J]. 过程工程学报, 2014, 14(4): 715-720. Zhang X M, Li J P, Wu Q B, et al. Research progress in replacement of CH4 from methane hydrate with CO2 [J]. The Chinese Journal of Process Engineering, 2014, 14(4): 715-720.
Zhang X M, Li J P, Wu Q B, et al. Research progress in replacement of CH4 from methane hydrate with CO2 [J]. The Chinese 720. Chinese.-Journal of Process Engineering, 2014, 14(4): 715 链接1

[11] Ota M, Morohashi K, Abe Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and Management, 2005, 46(11–12): 1680-1691.
Ota M, Morohashi K, Abe Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and 1691.-Management, 2005, 46(11–12): 1680 链接1

[12] Sun X, Luo T, Wang L, et al. Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization [J]. Applied Energy, 2019, 250: 7-18.
Sun X, Luo T, Wang L, et al. Numerical simulation of gas recovery from a low-permeability hydrate reservoir by 18.-depressurization [J]. Applied Energy, 2019, 250: 7 链接1

[13] 吴起, 卢静生, 李栋梁, 等. 降压开采过程中含水合物沉积物的 力学特性研究 [J]. 岩土力学, 2018, 39(12): 4508-4516. Wu Q, Lu J S, Li D L, et al. Experimental study of mechanical properties of hydrate-bearing sediments during depressurization mining [J]. Rock and Soil Mechanics, 2018, 39(12): 4508-4516.
Wu Q, Lu J S, Li D L, et al. Experimental study of mechanical properties of hydrate-bearing sediments during depressurization 4516. Chinese.-mining [J]. Rock and Soil Mechanics, 2018, 39(12): 4508 链接1

[14] 周守为, 陈伟, 李清平. 深水浅层天然气水合物固态流化绿色开 采技术 [J]. 中国海上油气, 2014, 26(5): 1-7. Zhou S W, Chen W, Li Q P. The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water [J]. China Offshore Oil and Gas, 2014, 26(5): 1-7.
Zhou S W, Chen W, Li Q P. The green solid fluidization development principle of natural gas hydrate stored in shallow layers 7. Chinese.-of deep water [J]. China Offshore Oil and Gas, 2014, 26(5): 1 链接1

[15] Konno Y, Fujii T, Sato A, et al. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production [J]. Energy & Fuels, 2017, 31(3): 2607-2616.
Konno Y, Fujii T, Sato A, et al. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: Toward future commercial production [J]. Energy & 2616.-Fuels, 2017, 31(3): 2607 链接1

[16] Yamamoto K, Wang X X, Tamaki M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir [J]. RSC Advances, 2019, 9(45): 25987-26013.
Yamamoto K, Wang X X, Tamaki M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas 26013.-production behavior from a heterogeneous methane hydrate reservoir [J]. RSC Advances, 2019, 9(45): 25987 链接1

[17] Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 2018, 1(1): 5-16.
Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 16.-2018, 1(1): 5 链接1

[18] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试 采主要进展 [J]. 中国地质, 2020, 47(3): 557-568. Ye J L, Qin X W, Xie W W, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. Geology of China, 2020, 47(3): 557-568.
Ye J L, Qin X W, Xie W W, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. Geology 568. Chinese.-of China, 2020, 47(3): 557 链接1

[19] Wei N, Sun W, Meng Y C, et al. Multiphase non equilibrium pipe flow behaviors in the solid fluidization exploitation of marine natural gas hydrate reservoir [J]. Energy Science & Engineering, 2018, 6(6): 760-782.
Wei N, Sun W, Meng Y C, et al. Multiphase non equilibrium pipe flow behaviors in the solid fluidization exploitation of marine natural gas hydrate reservoir [J]. Energy Science & 782.-Engineering, 2018, 6(6): 760 链接1

[20] Wang L, Wang G, Mao L, et al. Experimental research on the breaking effect of natural gas hydrate sediment for water jet and engineering applications [J]. Journal of Petroleum Science and Engineering, 2020, 184: 1-8.
Wang L, Wang G, Mao L, et al. Experimental research on the breaking effect of natural gas hydrate sediment for water jet 8.-and engineering applications [J]. Journal of Petroleum Science and Engineering, 2020, 184: 1 链接1

[21] 王国荣, 钟林, 刘清友, 等. 基于双层管双梯度深海油气及水合 物开发技术研究 [J]. 海洋工程装备与技术, 2019, 6(S1): 225- 233. Wang G R, Zhong L, Liu Q Y, et al. Research on marine petroleum and hydrate development technology based on dual gradient drilling of double-layer pipe [J]. Ocean Engineering Equipment and Technology, 2019, 6(S1): 225-233.
Wang G R, Zhong L, Liu Q Y, et al. Research on marine petroleum and hydrate development technology based on dual 233. Chinese.-gradient drilling of double-layer pipe [J]. Ocean Engineering Equipment and Technology, 2019, 6(S1): 225 链接1

相关研究