期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2023年 第25卷 第6期 doi: 10.15302/J-SSCAE-2023.06.007

从自卫到护卫:新时期网络安全保障体系构建与发展建议

1. 广州大学网络空间安全学院,广州 510006
2. 哈尔滨工业大学(深圳)计算机科学与技术学院,广东深圳 518055

资助项目 :中国工程院咨询项目“网络安全保障体系战略研究”(2022-JB-04) 收稿日期: 2023-08-22 修回日期: 2023-10-30 发布日期: 2023-11-29

下一篇 上一篇

摘要

随着网络攻防技术的快速发展,网络安全保障体系面临诸多挑战,研究新型网络安全保障体系成为推进我国信息化发展的迫切需要,对进一步提升网络安全性、可用性具有重要意义。本文梳理了我国以“自卫模式”为主的网络安全保障体系的运行现状;分析了当前体系面临的“捕不全”“拦不住”“看不清”和“抓不住”四大安全问题;提出了以近身蜜点、前置蜜庭、网关蜜阵、外溢蜜洞的“四蜜”威胁感知体系为代表的“护卫模式”网络安全保障体系,包括纵深威胁感知的蜜点技术、攻击观测和判别的蜜庭技术、协同联动的蜜阵技术和网络威慑与攻击绘制的蜜洞技术等重点发展的技术任务,以及“蜜点”加持的网络安全保险产业任务。研究建议,探索“护卫模式”网络安全保障机制,全面提升国家网络安全防护水平;探索“护卫模式”安全防护技术研究和应用,实现新旧安全防护技术的融合统一;探索面向“护卫模式”的网络安全人才培养新模式,培育创新实践型网络人才,为新时期我国网络安全保障体系研究提供参考。

图片

图1

参考文献

[ 1 ] 贾焰, 方滨兴, 李爱平, 等‍‍. 基于人工智能的网络空间安全防御战略研究 [J]‍. 中国工程科学, 2021, 23(3): 98‒105‍.
Jia Y, Fang B X, Li A P, et al‍. Artificial intelligence enabled cyberspace security defense [J]‍. Strategic Study of CAE, 2021, 23(3): 98‒105‍.

[ 2 ] Wu J X‍. Cyberspace endogenous safety and security [J]‍. Engineering, 2022, 15: 179‒185‍.

[ 3 ] 方滨兴, 时金桥, 王忠儒, 等‍. 人工智能赋能网络攻击的安全威胁及应对策略 [J]‍. 中国工程科学, 2021, 23(3): 60‒66‍.
Fang B X, Shi J Q, Wang Z R, et al‍. AI-enabled cyberspace attacks: Security risks and countermeasures [J]‍. Strategic Study of CAE, 2021, 23(3): 60‒66‍.

[ 4 ] 王秋华, 吴国华, 魏东晓, 等‍. 工业互联网安全产业发展态势及路径研究 [J]‍. 中国工程科学, 2021, 23(2): 46‒55‍.
Wang Q H, Wu G H, Wei D X, et al‍. Development trend and path of industrial Internet security industry in China [J]‍. Strategic Study of CAE, 2021, 23(2): 46‒55‍.

[ 5 ] Jiang Z M, Tang Z F, Zhang P, et al‍. Programmable adaptive security scanning for networked microgrids [J]‍. Engineering, 2021, 7(8): 1087‒1100‍.

[ 6 ] 马娟, 于广琛, 柯皓仁, 等‍. 工业互联网设备的网络安全管理与防护研究 [J]‍. 中国工程科学, 2021, 23(2): 81‒87‍.
Ma J, Yu G C, Ke H R, et al‍. Network security management and protection of industrial Internet equipment [J]‍. Strategic Study of CAE, 2021, 23(2): 81‒87‍.

[ 7 ] 安天研究院‍. 美国网络空间攻击与主动防御能力解析——美国网络空间安全主动防御体系 [J]‍. 网信军民融合, 2018 (2): 50‒51‍.
ANTIY‍. Analysis of American cyberspace attacks and active defense capability—American cyberspace security active defense system [J]‍. Civil-Military Integration on Cyberspace, 2018 (2): 50‒51‍.

[ 8 ] Bertino E‍. Zero trust architecture: Does it help? [J]‍. IEEE Security & Privacy, 2021, 19(5): 95‒96‍.

[ 9 ] He Y H, Huang D C, Chen L, et al‍. A survey on zero trust architecture: Challenges and future trends [J]‍. Wireless Communications and Mobile Computing, 2022, 2022: 6476274‍.

[10] 斯雪明, 王伟, 曾俊杰, 等‍. 拟态防御基础理论研究综述 [J]‍. 中国工程科学, 2016, 18(6): 62‒68‍.
Si X M, Wang W, Zeng J J, et al‍. A review of the basic theory of mimic defense [J]‍. Strategic Study of CAE, 2016, 18(6): 62‒68‍.

[11] 罗兴国, 仝青, 张铮, 等‍. 拟态防御技术 [J]‍. 中国工程科学, 2016, 18(6): 69‒73‍.
Luo X G, Tong Q, Zhang Z, et al‍. Mimic defense technology [J]‍. Strategic Study of CAE, 2016, 18(6): 69‒73‍.

[12] Wang Y W, Wu J X, Guo Y F, et al‍. Scientific workflow execution system based on mimic defense in the cloud environment [J]‍. Frontiers of Information Technology & Electronic Engineering, 2018, 19(12): 1522‒1536‍.

[13] Sepczuk M‍. Dynamic web application firewall detection supported by cyber mimic defense approach [J]‍. Journal of Network and Computer Applications, 2023, 213: 103596‍.

[14] Srinivasa S, Pedersen J M, Vasilomanolakis E‍. Towards systematic honeytoken fingerprinting [C]‍. Merkez: The 13th International Conference on Security of Information and Networks, 2020.

[15] Zhang L, Thing V L L‍. Three decades of deception techniques in active cyber defense: retrospect and outlook [J]‍. Computers & Security, 2021, 106: 102288‍.

[16] Osman A, Bruckner P, Salah H, et al‍. Sandnet: Towards high quality of deception in container-based microservice architectures [C]‍. Shanghai: IEEE International Conference on Communications, 2019‍.

[17] Qin X S, Jiang F, Cen M C, et al‍. Hybrid cyber defense strategies using honey-X: A survey [J]‍. Computer Networks, 2023, 230: 109776‍.

[18] Rauti S‍. A survey on countermeasures against man-in-the-browser attacks [C]‍. Bhopal: 19th International Conference on Hybrid Intelligent Systems, 2019‍.

[19] Amouei M, Rezvani M, Fateh M‍. RAT: Reinforcement-learning-driven and adaptive testing for vulnerability discovery in web application firewalls [J]‍. IEEE Transactions on Dependable and Secure Computing, 2022, 19(5): 3371‒3386‍.

[20] Takahashi H, Ahmad H F, Mori K‍. Application for autonomous decentralized multi layers cache system to web application firewall [C]‍. Tokyo: The Tenth International Symposium on Autonomous Decentralized Systems, 2011‍.

[21] 李雪, 唐文, 张华‍. 一种新的Web应用防火墙的自学习模型 [J]‍. 小型微型计算机系统, 2014, 35(3): 483‒487‍.
Li X, Tang W, Zhang H‍. New model of learning Web application firewall [J]‍. Journal of Chinese Computer Systems, 2014, 35(3): 483‒487‍.

[22] 李莉, 翟征德‍. 一种基于Web应用防火墙的主动安全加固方案 [J]‍. 计算机工程与应用, 2011, 47(25): 104‒106‍.
Li L, Zhai Z D‍. Web security enhancement scheme based on Web application firewall [J]‍. Computer Engineering and Applications, 2011, 47(25): 104‒106‍.

[23] Bayazeed A, Khorzom K, Aljnidi M‍. A survey of self-coordination in self-organizing network [J]‍. Computer Networks, 2021, 196: 108222‍.

[24] 王瑶, 艾中良, 张先国‍. 基于蜜标和蜜罐的追踪溯源技术研究与实现 [J]‍. 信息技术, 2018 (3): 108‒112‍.
Wang Y, Ai Z L, Zhang X G‍. Research and implementation of the network traceback technology based on honey-beacon and honeypot [J]‍. Information Technology, 2018 (3): 108‒112‍.

[25] Zhao S Q, Lu Z, Wang C‍. Measurement integrity attacks against network tomography: Feasibility and defense [J]‍. IEEE Transactions on Dependable and Secure Computing, 2021, 18(6): 2617‒2630‍.

[26] 姜建国, 王继志, 孔斌, 等‍. 网络攻击源追踪技术研究综述 [J]‍. 信息安全学报, 2018, 3(1): 111‒131‍.
Jiang J G, Wang J Z, Kong B, et al‍. On the survey of network attack source traceback [J]‍. Journal of Cyber Security, 2018, 3(1): 111‒131‍.

相关研究