期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2023年 第25卷 第6期 doi: 10.15302/J-SSCAE-2023.06.010

量子网络系统研究进展与关键技术分析

网络与交换技术国家重点实验室(北京邮电大学),北京 100876

资助项目 :中国工程院咨询项目“量子信息网络发展战略研究”(2022-HYZD-01) 收稿日期: 2023-10-11 修回日期: 2023-10-30 发布日期: 2023-11-22

下一篇 上一篇

摘要

量子信息领域的迅速发展为现代信息技术带来了新的机遇与挑战,其中的热门研究方向之一即量子网络,旨在利用量子力学的基本特性实现长距离的(安全)通信任务,或通过分布式计算提供优于经典计算网络的计算能力,相关研究对推动量子信息的实用化具有重要意义。本文根据量子网络应用场景和技术手段的差异性,从量子密码网络、量子云计算网络、量子隐形传态网络3 个细分类别出发,全面梳理了国内外的研究进展及发展挑战,以便掌握量子网络系统的最新发展态势;结合量子网络的实施情况,阐述了量子网络系统发展中亟待攻克的链路建立、信息传输、网络协议、物理硬件等关键技术。综合来看,量子网络仍处于初级发展阶段,当前需积极应对挑战并把握机遇,以增强我国前沿领域的科技硬实力。研究建议,加强基础硬件设施研发投入、重视量子网络理论研究、加强交叉学科研究和相关人才培养,以促进我国量子网络系统的发展。

图片

图1

参考文献

[ 1 ] Karlsson A, Bourennane M‍‍. Quantum teleportation using three particle entanglement [C]‍. Glasgow: European Quantum Electronics Conference, 1998‍.

[ 2 ] Bennett C H‍. Quantum cryptography: Public key distribution and coin tossing [C]‍. Bangalore: IEEE International Conference on Computers, Systems, and Signal Processing, 1984‍.

[ 3 ] Shor P W‍. Algorithms for quantum computation: Discrete logarithms and factoring [C]‍. Santa Fe: The 35th Annual Symposium on Foundations of Computer Science, 2002.

[ 4 ] Grover L K‍. Quantum mechanics helps in searching for a needle in a haystack [J]‍. Physical Review Letters, 1997, 79(2): 325‒328‍.

[ 5 ] 郭光灿‍. 量子信息技术研究现状与未来 [J]‍. 中国科学: 信息科学, 2020, 50(9): 1395‒1406‍.
Guo G C‍. Research status and future of quantum information technology [J]‍. Scientia Sinica Informationis, 2020, 50(9): 1395‒1406‍.

[ 6 ] Gyongyosi L, Imre S‍. Advances in the quantum Internet [J]‍. Communications of the ACM, 2022, 65(8): 52‒63‍.

[ 7 ] Elliott C, Yeh H‍. DARPA quantum network testbed [R]‍. New York: BBN Technologies Cambridge, 2007‍.

[ 8 ] Peev M, Poppe A, Maurhart O, et al‍. The SECOQC quantum key distribution network in Vienna [C]‍. Vienna: The 35th European Conference on Optical Communication, 2009‍.

[ 9 ] Sasaki M, Fujiwra M, Ishizuka H, et al‍. Tokyo QKD network and the evolution to secure photonic network [C]‍. CLEO: 201-Laser Science to Photonic Applications, 2011‍.

[10] Stanley M, Gui Y, Unnikrishnan D, et al‍. Recent progress in quantum key distribution network deployments and standards [J]‍. Journal of Physics: Conference Series, 2022, 2416(1): 012001‍.

[11] IDQ‍. A new 380 km long intercity QKD infrastructure in Poland‍ [EB/OL]‍. (2022-09-05)[2023-09-28]‍. https://www‍.idquantique‍.com/a new 380 km long intercity qkd infrastructure in poland/‍.

[12] Chen W, Han Z F, Zhang T, et al‍. Field experiment on a "star type" metropolitan quantum key distribution network [J]‍. IEEE Photonics Technology Letters, 2009, 21(9): 575‒577‍.

[13] 中国科学技术大学‍. 世界首条量子保密通信干线开通‍ [EB/OL]‍. (2017-10-19)[2023-09-28]‍. https://www‍.cas‍.cn/jh/201711/t20171120_4622633‍.shtml‍.
University of Science and Technology of China‍. The world´s first quantum secured communication backbone is now operational‍ [EB/OL]‍. (2017-10-19)[2023-09-28]‍. https://www‍.cas‍.cn/jh/201711/t20171120_4622633‍.shtml‍.

[14] Chen Y A, Zhang Q, Chen T Y, et al‍. An integrated space-to-ground quantum communication network over 4, 600 kilometres [J]‍. Nature, 2021, 589: 214‒219‍.

[15] Chen J P, Zhang C, Liu Y, et al‍. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas [J]‍. Nature Photonics, 2021, 15: 570‒575‍.

[16] Wang L J, Zhang K Y, Wang J Y, et al‍. Experimental authentication of quantum key distribution with post-quantum cryptography [J]‍. NPJ Quantum Information, 2021, 7: 67‍.

[17] 安徽网‍. 合肥建成全国最大量子保密通信城域网‍ [EB/OL]‍.(2022-08-26)[2023-09-28]‍. http://www‍.ahwang‍.cn/hefei/20220826/2419436‍.html‍.
Anhui Network‍. Hefei has established the largest quantum secured communication metropolitan area network in China‍ [EB/OL]‍. (2022-08-26)[2023-09-28]‍. http://www‍.ahwang‍.cn/hefei/20220826/2419436‍.html‍.

[18] Ralph T C‍. Continuous variable quantum cryptography [J]‍. Physical Review A, 1999, 61: 010303‍.

[19] Lo H K, Curty M, Qi B‍. Measurement-device-independent quantum key distribution [J]‍. Physical Review Letters, 2012, 108(13): 130503‍.

[20] Lucamarini M, Yuan Z L, Dynes J F, et al‍. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters [J]‍. Nature, 2018, 557: 400‒403‍.

[21] Fossier S, Diamanti E, Debuisschert T, et al‍. Field test of a continuous-variable quantum key distribution prototype [J]‍. New Journal of Physics, 2009, 11(4): 045023‍.

[22] Zhang Y C, Li Z Y, Chen Z Y, et al‍. Continuous-variable QKD over 50 km commercial fiber [J]‍. Quantum Science and Technology, 2019, 4(3): 035006‍.

[23] Liu Y, Chen T Y, Wang L J, et al‍. Experimental measurement-device-independent quantum key distribution [J]‍. Physical Review Letters, 2013, 111(13): 130502‍.

[24] Rubenok A, Slater J A, Chan P, et al‍. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks [J]‍. Physical Review Letters, 2013, 111(13): 130501‍.

[25] Cao Y, Li Y H, Yang K X, et al‍. Long-distance free-space measurement-device-independent quantum key distribution [J]‍. Physical Review Letters, 2020, 125(26): 260503‍.

[26] Fan-Yuan G J, Lu F Y, Wang S, et al‍. Robust and adaptable quantum key distribution network without trusted nodes [J]‍. Optica, 2022, 9(7): 812‍.

[27] Wang S, Yin Z Q, He D Y, et al‍. Twin-field quantum key distribution over 830 km fibre [J]‍. Nature Photonics, 2022, 16: 154‒161‍.

[28] Liu Y, Zhang W J, Jiang C, et al‍. Experimental twin-field quantum key distribution over 1000 km fiber distance [J]‍. Physical Review Letters, 2023, 130(21): 210801‍.

[29] Zhou L, Lin J P, Xie Y M, et al‍. Experimental quantum communication overcomes the rate-loss limit without global phase tracking [J]‍. Physical Review Letters, 2023, 130(25): 250801‍.

[30] Zhang X, Gao F, Qin S J, et al‍. Current status and future development of quantum cryptographic protocols [J]‍. Chinese Journal of Engineering Science, 2022, 24(4): 145‍.

[31] 中国科学院量子信息与量子科技创新研究院‍. 中国三项量子行业标准正式执行 [EB/OL]‍. (2023-08-01)[2023-09-28]‍. https://quantumcas‍.ac‍.cn/2023/0828/c24874a610609/page‍.htm‍.
CAS Center for Excellence in Quantum Information and Quantum Physics‍. China´s three quantum industry standards officially implemented [EB/OL]‍. (2023-08-01)[2023-09-28]‍. https://quantumcas‍.ac‍.cn/2023/0828/c24874a610609/page‍.htm‍.

[32] 魏璐, 马钟, 刘倩玉‍. 量子计算模拟平台发展综述 [J]‍. 微电子学与计算机, 2022, 39(11): 1‒10‍.
Wei L, Ma Z, Liu Q Y‍. Overview of quantum computing simulation platforms [J]‍. Microelectronics & Computer, 2022, 39(11): 1‒10‍.

[33] Group B Q‍. Quafu-qcover: Explore combinatorial optimization problems on cloud-based quantum computers [EB/OL]‍. (2023-05-29)[2023-09-28]. https://arxiv‍.org/abs/2305‍.17979‍.pdf‍.

[34] Xinhuanet‍. China´s 176-qubit quantum computing platform goes online [EB/OL]‍. (2023-05-31)‍[2023-09-28]‍. https://english‍.news‍.cn/20230531/0946675301284c1786b4ee27251c89a3/c‍.html‍.

[35] Ryan L R‍. Overview and comparison of gate level quantum software platforms [J]‍. Quantum, 2019, 3: 130‍.

[36] Chen J X, Zhang F, Huang C, et al‍. Classical simulation of intermediate-size quantum circuits [EB/OL]‍. (2018-03-03)[2023-09-28]‍. https://arxiv‍.org/abs/1805‍.01450‍.pdf‍.

[37] Cuomo D, Caleffi M, Cacciapuoti A S‍. Towards a distributed quantum computing ecosystem [J]‍. IET Quantum Communication, 2020, 1(1): 3‒8‍.

[38] Perlin M, Tomesh T, Pearlman B, et al‍. Parallelizing simulations of large quantum circuits [C]‍. New York: The International Conference for High Performance Computing, Networking, Storage, and Analysis, Supercomputin, 2019‍.

[39] Grover L K‍. Quantum telecomputation [EB/OL]‍. (1997-04-07)[2023-09-28]‍. https://arxiv‍.org/abs/quant-ph/9704012‍.pdf‍.

[40] Xiao L G, Qiu D W, Luo L, et al‍. Distributed shor´s algorithm [J]‍. Quantum Information and Computation, 2023, 23(1&2): 27‒44‍.

[41] Liu X, Hu X M, Zhu T X, et al‍. Distributed quantum computing over 7‍.0 km [EB/OL]‍. (2023-07-28)[2023-09-28]‍. https://arxiv‍.org/abs/2307‍.15634‍.pdf‍.

[42] Peng T Y, Harrow A W, Ozols M, et al‍. Simulating large quantum circuits on a small quantum computer [J]‍. Physical Review Letters, 2020, 125(15): 150504‍.

[43] Lowe A, Medvidović M, Hayes A, et al‍. Fast quantum circuit cutting with randomized measurements [J]‍. Quantum, 2023, 7: 934‍.

[44] 崔子嵬, 王维语, 翁文康‍. 量子云计算平台的现状与发展 [J]‍. 信息通信技术与政策, 2020 (7): 43‒48‍.
Cui Z W, Wang W Y, Weng W K‍. The status and development of quantum computation cloud platform [J]‍. Information and Communications Technology and Policy, 2020 (7): 43‒48‍.

[45] Bouwmeester D, Pan J W, Mattle K, et al‍. Experimental quantum teleportation [J]‍. Nature, 1997, 390(6660): 575‒579‍.

[46] Zhao Z, Chen Y A, Zhang A N, et al‍. Experimental demonstration of five-photon entanglement and open-destination teleportation [J]‍. Nature, 2004, 430: 54‒58‍.

[47] Zhang Q, Goebel A, Wagenknecht C, et al‍. Experimental quantum teleportation of a two-qubit composite system [J]‍. Nature Physics, 2006, 2: 678‒682‍.

[48] Wang X L, Cai X D, Su Z E, et al‍. Quantum teleportation of multiple degrees of freedom of a single photon [J]‍. Nature, 2015, 518: 516‒519‍.

[49] Ren J G, Xu P, Yong H L, et al‍. Ground-to-satellite quantum teleportation [J]‍. Nature, 2017, 549: 70‒73‍.

[50] Luo Y H, Zhong H S, Erhard M, et al‍. Quantum teleportation in high dimensions [J]‍. Physical Review Letters, 2019, 123(7): 070505‍.

[51] Liu S S, Lou Y B, Jing J T‍. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation [J]‍. Nature Communications, 2020, 11: 3875‍.

[52] Langenfeld S, Welte S, Hartung L, et al‍. Quantum teleportation between remote qubit memories with only a single photon as a resource [J]‍. Physical Review Letters, 2021, 126(13): 130502‍.

[53] Sherson J F, Krauter H, Olsson R K, et al‍. Quantum teleportation between light and matter [J]‍. Nature, 2006, 443: 557‒560‍.

[54] Bao X H, Xu X F, Li C M, et al‍. Quantum teleportation between remote atomic-ensemble quantum memories [J]‍. Proceedings of the National Academy of Sciences, 2012, 109(50): 20347‒20351‍.

[55] Nölleke C, Neuzner A, Reiserer A, et al‍. Efficient teleportation between remote single-atom quantum memories [J]‍. Physical Review Letters, 2013, 110(14): 140403‍.

[56] Pfaff W, Hensen B J, Bernien H, et al‍. Unconditional quantum teleportation between distant solid-state quantum bits [J]‍. Science, 2014, 345(6196): 532‒535‍.

[57] Hermans S L N, Pompili M, Beukers H K C, et al‍. Qubit teleportation between non-neighbouring nodes in a quantum network [J]‍. Nature, 2022, 605(7911): 663‒668‍.

[58] Briegel H J, Dür W, Cirac J I, et al‍. Quantum repeaters: The role of imperfect local operations in quantum communication [J]‍. Physical Review Letters, 1998, 81(26): 5932‒5935‍.

[59] Duan L M, Lukin M D, Cirac J I, et al‍. Long-distance quantum communication with atomic ensembles and linear optics [J]‍. Nature, 2001, 414(6862): 413‒418‍.

[60] Wei S H, Jing B, Zhang X Y, et al‍. Towards real-world quantum networks: A review [J]‍. Laser & Photonics Reviews, 2022, 16(3): 2100219‍.

[61] 魏世海, 张雪莹, 廖金宇, 等‍. 集成固态光量子存储器件研究进展 [J]‍. 信息通信技术与政策, 2023, 49(7): 44‒52‍.
Wei S H, Zhang X Y, Liao J Y, et al‍. Progress of integrated solid-state photonic quantum memory [J]‍. Information and Communications Technology and Policy, 2023, 49(7): 44‒52‍.

[62] Klyshko D‍. Coherent photon decay in a nonlinear medium [J]‍. Journal of Experimental and Theoretical Physics Letters, 1967, 6: 23‍.

[63] Zel´dovich B, Klyshko D‍. Field statistics in parametric luminescence [J]‍. Jetp Letters, 1969, 9: 40‍.

[64] Hübel H, Hamel D R, Fedrizzi A, et al‍. Direct generation of photon triplets using cascaded photon-pair sources [J]‍. Nature, 2010, 466: 601‒603‍.

[65] Kwiat P G, Mattle K, Weinfurter H, et al‍. New high-intensity source of polarization-entangled photon pairs [J]‍. Physical Review Letters, 1995, 75(24): 4337‒4341‍.

[66] Zhang C, Huang Y F, Wang Z, et al‍. Experimental greenberger-horne-zeilinger-type six-photon quantum nonlocality [J]‍. Physical Review Letters, 2015, 115(26): 260402‍.

[67] Kim Y H, Kulik S P, Chekhova M V, et al‍. Experimental entanglement concentration and universal Bell-state synthesizer [J]‍. Physical Review A, 2003, 67: 010301‍.

[68] Zheng S B, Guo G C‍. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED [J]‍. Physical Review Letters, 2000, 85(11): 2392‒2395‍.

[69] Cervera-Lierta A, Krenn M, Aspuru-Guzik A, et al‍. Experimental high-dimensional greenberger-horne-zeilinger entanglement with superconducting transmon qutrits [J]‍. Physical Review Applied, 2022, 17(2): 024062‍.

[70] 高伟超‍. 纠缠光子源的制备及其在量子信息中的应用研究 [D]‍. 北京: 北京邮电大学 (博士学位论文), 2020‍.
Gao W C‍. Preparation of entangled photon source and its application in quantum information [D]‍. Beijing: Beijing University of Posts and Telecommunications (Doctoral dissertation), 2020‍.

[71] Ecker S, Bouchard F, Bulla L, et al‍. Overcoming noise in entanglement distribution [J]‍. Physical Review X, 2019, 9(4): 041042‍.

[72] Jost J D, Home J P, Amini J M, et al‍. Entangled mechanical oscillators [J]‍. Nature, 2009, 459: 683‒685‍.

[73] Kurokawa H, Yamamoto M, Sekiguchi Y, et al‍. Remote entanglement of superconducting qubits via solid-state spin quantum memories [J]‍. Physical Review Applied, 2022, 18(6): 064039‍.

[74] Gaudreau L, Bogan A, Korkusinski M, et al‍. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits [J]‍. Semiconductor Science and Technology, 2017, 32(9): 093001‍.

[75] van Leent T, Bock M, Fertig F, et al‍. Entangling single atoms over 33 km telecom fibre [J]‍. Nature, 2022, 607: 69‒73‍.

[76] Liu S S, Lou Y B, Chen Y X, et al‍. All-optical entanglement swapping [J]‍. Physical Review Letters, 2022, 128(6): 060503‍.

[77] Liu Y H, Yan Z H, Jia X J, et al‍. Deterministically entangling two remote atomic ensembles via light-atom mixed entanglement swapping [J]‍. Scientific Reports, 2016, 6: 25715‍.

[78] Salimian S, Tavassoly M K, Ghasemi M‍. Multistage entanglement swapping using superconducting qubits in the absence and presence of dissipative environment without Bell state measurement [J]‍. Scientific Reports, 2023, 13: 16342‍.

[79] Shabani A, Kosut R L, Mohseni M, et al‍. Efficient measurement of quantum dynamics via compressive sensing [J]‍. Physical Review Letters, 2011, 106(10): 100401‍.

[80] Zhu H J, Hayashi M‍. Efficient verification of pure quantum states in the adversarial scenario [J]‍. Physical Review Letters, 2019, 123(26): 260504‍.

[81] Bennett C H, Brassard G, Popescu S, et al‍. Purification of noisy entanglement and faithful teleportation via noisy channels [J]‍. Physical Review Letters, 1996, 76(5): 722‒725‍.

[82] Duan L M, Giedke G, Cirac J I, et al‍. Entanglement purification of Gaussian continuous variable quantum states [J]‍. Physical Review Letters, 2000, 84(17): 4002‒4005‍.

[83] Wilde M M, Krovi H, Brun T A‍. Convolutional entanglement distillation [C]‍. Austin: 2010 IEEE International Symposium on Information Theory, 2010‍.

[84] Kalb N, Reiserer A A, Humphreys P C, et al‍. Entanglement distillation between solid-state quantum network nodes [J]‍. Science, 2017, 356(6341): 928‒932‍.

[85] Nweke N I, Toliver P, Runser R J, et al‍. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels [J]‍. Applied Physics Letters, 2005, 87(17): 174103‍.

[86] Qi B, Zhu W, Qian L, et al‍. Feasibility of quantum key distribution through a dense wavelength division multiplexing network [J]‍. New Journal of Physics, 2010, 12(10): 103042‍.

[87] Bahrami A, Lord A, Spiller T‍. Quantum key distribution integration with optical dense wavelength division multiplexing: A review [J]‍. IET Quantum Communication, 2020, 1(1): 9‒15‍.

[88] 王宇帅, 李云霞, 石磊, 等‍. 量子密钥通信网信道复用方案研究 [J]‍. 通信技术, 2015, 48(1): 82‒85‍.
Wang Y S, Li Y X, Shi L, et al‍. Channel multiplexing scheme in optical networking for quantum key distribution [J]‍. Communications Technology, 2015, 48(1): 82‒85‍.

[89] Xavier G B, Lima G‍. Quantum information processing with space-division multiplexing optical fibres [J]‍. Communications Physics, 2020, 3: 9‍.

[90] Birks T A, Gris-Sánchez I, Yerolatsitis S, et al‍. The photonic lantern [J]‍. Advances in Optics and Photonics, 2015, 7(2): 107‒167‍.

[91] Yerolatsitis S, Gris-Sánchez I, Birks T A‍. Adiabatically-tapered fiber mode multiplexers [J]‍. Optics Express, 2014, 22(1): 608‒617‍.

[92] Zeng X L, Li Y, Feng L P, et al‍. All-fiber orbital angular momentum mode multiplexer based on a mode-selective photonic lantern and a mode polarization controller [J]‍. Optics Letters, 2018, 43(19): 4779‒4782‍.

[93] Cañas G, Vera N, Cariñe J, et al‍. High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers [J]‍. Physical Review A, 2017, 96(2): 022317‍.

[94] Cozzolino D, Bacco D, Da Lio B, et al‍. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication [J]‍. Physical Review Applied, 2019, 11(6): 064058‍.

[95] Hu X M, Xing W B, Liu B H, et al‍. Efficient distribution of high-dimensional entanglement through 11 km fiber [J]‍. Optica, 2020, 7(7): 738‒743‍.

[96] Cirac J I, Zoller P, Kimble H J, et al‍. Quantum state transfer and entanglement distribution among distant nodes in a quantum network [J]‍. Physical Review Letters, 1997, 78(16): 3221‒3224‍.

[97] Dou J P, Yang A L, Du M Y, et al‍. Direct observation of broadband nonclassical states in a room-temperature light-matter interface [J]‍. NPJ Quantum Information, 2018, 4: 31‍.

[98] Yang P F, Xia X W, He H, et al‍. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity [J]‍. Physical Review Letters, 2019, 123(23): 233604‍.

[99] Burek M J, Meuwly C, Evans R E, et al‍. Fiber-coupled diamond quantum nanophotonic interface [J]‍. Physical Review Applied, 2017, 8(2): 024026‍.

[100] Yang S J, Wang X J, Bao X H, et al‍. An efficient quantum light-matter interface with sub-second lifetime [J]‍. Nature Photonics, 2016, 10(6): 381‒384‍.

[101] Stute A, Casabone B, Brandstätter B, et al‍. Toward an ion-photon quantum interface in an optical cavity [J]‍. Applied Physics B, 2012, 107(4): 1145‒1157‍.

[102] Vahala K‍. Optical microcavities [J]‍. Nature, 2003, 424: 839‒846‍.

[103] Yao W, Liu R B, Sham L J‍. Theory of control of the dynamics of the interface between stationary and flying qubits [J]‍. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(10): S318‒S325‍.

[104] Barzanjeh S, Abdi M, Milburn G J, et al‍. Reversible optical-to-microwave quantum interface [J]‍. Physical Review Letters, 2012, 109(13): 130503‍.

[105] Vedovato F, Agnesi C, Tomasin M, et al‍. Postselection-loophole-free Bell violation with genuine time-bin entanglement [J]‍. Physical Review Letters, 2018, 121(19): 190401‍.

[106] Kupchak C, Erskine J, England D, et al‍. Terahertz-bandwidth switching of heralded single photons [J]‍. Optics Letters, 2019, 44(6): 1427‒1430‍.

[107] Oza N N, Huang Y P, Kumar P‍. Ultrafast switching of photonic entanglement [C]‍. California: IEEE Photonics Conference, 2012‍.

[108] Kupchak C, Bustard P J, Heshami K, et al‍. Time-bin-to-polarization conversion of ultrafast photonic qubits [J]‍. Physical Review A, 2017, 96(5): 053812‍.

[109] Pu Y F, Wu Y K, Jiang N, et al‍. Experimental entanglement of 25 individually accessible atomic quantum interfaces [J]‍. Science Advances, 2018, 4(4): eaar3931‍.

[110] Choi K S, Goban A, Papp S B, et al‍. Entanglement of spin waves among four quantum memories [J]‍. Nature, 2010, 468(7322): 412‒416‍.

[111] Illiano J, Caleffi M, Manzalini A, et al‍. Quantum Internet protocol stack: A comprehensive survey [J]‍. Computer Networks, 2022, 213: 109092‍.

[112] Van Meter R, Ladd T D, Munro W J, et al‍. System design for a long-line quantum repeater [J]‍. IEEE/ACM Transactions on Networking, 2009, 17(3): 1002‒1013‍.

[113] Van Meter R, Touch J‍. Designing quantum repeater networks [J]‍. IEEE Communications Magazine, 2013, 51(8): 64‒71‍.

[114] Dahlberg A, Skrzypczyk M, Coopmans T, et al‍. A link layer protocol for quantum networks [C]‍. Beijing: The ACM Special Interest Group on Data Communication, 2019‍.

[115] Kozlowski W, Wehner S‍. Towards large-scale quantum networks [C]‍. Dublin: The Sixth Annual ACM International Conference on Nanoscale Computing and Communication, 2019‍.

[116] Li Z H, Xue K P, Li J, et al‍. Building a large-scale and wide-area quantum Internet based on an OSI-alike model [J]‍. China Communications, 2021, 18(10): 1‒14‍.

[117] Pirker A, Dür W‍. A quantum network stack and protocols for reliable entanglement-based networks [J]‍. New Journal of Physics, 2019, 21(3): 033003‍.

[118] Illiano J, Caleffi M, Manzalini A, et al‍. Quantum Internet protocol stack: A comprehensive survey [J]‍. Computer Networks, 2022, 213: 109092‍.

[119] Van Meter R, Satoh T, Ladd T D, et al‍. Path selection for quantum repeater networks [J]‍. Networking Science, 2013, 3(1): 82‒95‍.

[120] Li J, Wang M J, Xue K P, et al‍. Fidelity-guaranteed entanglement routing in quantum networks [J]‍. IEEE Transactions on Communications, 2022, 70(10): 6748‒6763‍.

[121] Caleffi M‍. Optimal routing for quantum networks [J]‍. IEEE Access, 2017, 5: 22299‒22312‍.

[122] Das S, Khatri S, Dowling J P‍. Robust quantum network architectures and topologies for entanglement distribution [J]‍. Physical Review A, 2018, 97: 012335‍.

[123] Shirichian M, Tofighi S‍. Protocol for routing entanglement in the quantum ring network [C]‍. Tehran: 2018 9th International Symposium on Telecommunications (IST), 2018‍.

[124] Pant M, Krovi H, Towsley D, et al‍. Routing entanglement in the quantum Internet [J]‍. NPJ Quantum Information, 2019, 5: 25‍.

[125] Li C H, Li T Y, Liu Y X, et al‍. Effective routing design for remote entanglement generation on quantum networks [J]‍. NPJ Quantum Information, 2021, 7(1): 10‍.

[126] Cai X F, Yu X T, Shi X X, et al‍. Ad hoc quantum network routing protocol based on quantum teleportation [C]‍. Nanjing: The International Symposium on Antennas & Propagation, 2013‍.

[127] Yu X T, Zhang Z C, Xu J‍. Distributed wireless quantum communication networks with partially entangled pairs [J]‍. Chinese Physics B, 2014, 23(1): 010303‍.

[128] Zhang L, Liu Q‍. Optimisation of the routing protocol for quantum wireless Ad Hoc network [J]‍. IET Quantum Communication, 2022, 3(1): 5‒12‍.

[129] Elliott C, Colvin A, Pearson D, et al‍. Current status of the DARPA quantum network [C]‍. Orlando: Quantum Information and Computation III, 2005‍.

[130] Dianati M, Alléaume R, Gagnaire M, et al‍. Architecture and protocols of the future European quantum key distribution network [J]‍. Security and Communication Networks, 2008, 1(1): 57‒74‍.

[131] Han Q, Yu L Y, Zheng W C, et al‍. A novel QKD network routing algorithm based on optical-path-switching [J]‍. Journal of Information Hiding and Multimedia Signal Processing, 2014, 5: 13‒19‍.

[132] Zou X Y, Yu X S, Zhao Y L, et al‍. Collaborative routing in partially-trusted relay based quantum key distribution optical networks [C]‍. California: Optical Fiber Communication Conference (OFC), 2020‍.

[133] Pirker A, Wallnöfer J, Dür W‍. Modular architectures for quantum networks [J]‍. New Journal of Physics, 2018, 20(5): 053054‍.

[134] Kozlowski W, Dahlberg A, Wehner S‍. Designing a quantum network protocol [C]‍. Barcelona: The 16th International Conference on Emerging Networking EXperiments and Technologies, 2020.

[135] Hussein S A, Abdullah A A‍. A review of various quantum routing protocols designed for quantum network environment [C]‍. Malang: 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 2022‍.

[136] 张雪莹, 袁晨智, 魏世海, 等‍. 稀土掺杂固态量子存储研究进展 [J]‍. 低温物理学报, 2019, 41(5): 315‒334‍.
Zhang X Y, Yuan C Z, Wei S H, et al‍. Rare earth ion doped solid state quantum memory [J]‍. Low Temperature Physical Letters, 2019, 41(5): 315‒334‍.

[137] Wang Y F, Li J F, Zhang S C, et al‍. Efficient quantum memory for single-photon polarization qubits [J]‍. Nature Photonics, 2019, 13(5): 346‒351‍.

[138] Main D, Hird T M, Gao S, et al‍. Room temperature atomic frequency comb storage for light [J]‍. Optics Letters, 2021, 46(12): 2960‒2963‍.

[139] Nakazato T, Reyes R, Imaike N, et al‍. Quantum error correction of spin quantum memories in diamond under a zero magnetic field [J]‍. Communications Physics, 2022, 5: 102‍.

[140] Ma Y, Ma Y Z, Zhou Z Q, et al‍. One-hour coherent optical storage in an atomic frequency comb memory [J]‍. Nature Communications, 2021, 12(1): 2381‍.

[141] Wei S H, Jing B, Zhang X Y, et al‍. Storage of 1650 modes of single photons at telecom wavelength [EB/OL]‍. (2023-02-08)[2023-09-28]. https://arxiv‍.org/abs/2209‍.00802.

[142] Specht H P, Nölleke C, Reiserer A, et al‍. A single-atom quantum memory [J]‍. Nature, 2011, 473(7346): 190‒193‍.

[143] Wang P F, Luan C Y, Qiao M, et al‍. Single ion qubit with estimated coherence time exceeding one hour [J]‍. Nature Communications, 2021, 12: 233‍.

[144] Heinze G, Hubrich C, Halfmann T‍. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute [J]‍. Physical Review Letters, 2013, 111(3): 033601‍.

[145] Afzelius M, Simon C, de Riedmatten H, et al‍. Multimode quantum memory based on atomic frequency combs [J]‍. Physical Review A, 2009, 79(5): 052329‍.

[146] Damon V, Bonarota M, Louchet-Chauvet A, et al‍. Revival of silenced echo and quantum memory for light [J]‍. New Journal of Physics, 2011, 13(9): 093031‍.

[147] Azuma K, Tamaki K, Lo H K‍. All-photonic quantum repeaters [J]‍. Nature Communications, 2015, 6: 6787‍.

[148] Li Z D, Zhang R, Yin X F, et al‍. Experimental quantum repeater without quantum memory [J]‍. Nature Photonics, 2019, 13: 644‒648‍.

[149] Sangouard N, Simon C, de Riedmatten H, et al‍. Quantum repeaters based on atomic ensembles and linear optics [J]‍. Reviews of Modern Physics, 2011, 83(1): 33‒80‍.

[150] Liu X, Hu J, Li Z F, et al‍. Heralded entanglement distribution between two absorptive quantum memories [J]‍. Nature, 2021, 594: 41‒45‍.

[151] Muralidharan S, Li L S, Kim J, et al‍. Optimal architectures for long distance quantum communication [J]‍. Scientific Reports, 2016, 6: 20463‍.

[152] Krastanov S, Raniwala H, Holzgrafe J, et al‍. Optically heralded entanglement of superconducting systems in quantum networks [J]‍. Physical Review Letters, 2021, 127(4): 040503‍.

[153] Li T, Yang G J, Deng F G‍. Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities [J]‍. Physical Review A, 2016, 93: 012302‍.

[154] Roffe J‍. Quantum error correction: An introductory guide [J]‍. Contemporary Physics, 2019, 60(3): 226‒245‍.

[155] Munro W J, Stephens A M, Devitt S J, et al‍. Quantum communication without the necessity of quantum memories [J]‍. Nature Photonics, 2012, 6: 777‒781‍.

[156] Muralidharan S, Kim J, Lütkenhaus N, et al‍. Ultrafast and fault-tolerant quantum communication across long distances [J]‍. Physical Review Letters, 2014, 112(25): 250501‍.

相关研究