期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2023年 第25卷 第6期 doi: 10.15302/J-SSCAE-2023.06.020

风光波动电源下质子交换膜电解水制氢技术发展与应用

1. 国网浙江省电力有限公司电力科学研究院,杭州 310014;

2. 北京智慧能源研究院,北京 102209

资助项目 :国网科技项目 (5211DS22000N) 收稿日期: 2023-10-16 修回日期: 2023-12-01 发布日期: 2023-12-21

下一篇 上一篇

摘要

发展具有波动性负荷跟随能力的质子交换膜(PEM)电解水技术,是实现可再生能源耦合电解水制氢、促进可再生能源消纳的有效途径。本文梳理了风电耦合制氢、光伏发电耦合制氢等可再生电力制氢场景,分析了可再生能源的波动特性;从风光波动电源对电解池影响显著、风光波动电源加速电解池部件衰减、风光波动电源模拟方式三方面,详细阐述了PEM电解水制氢的基本特性以及研究进展;进一步讨论了PEM电解槽技术研发、PEM电解槽制氢技术发展方向。在把握风光耦合制氢现状及经济性、明晰风光波动电源电解水制氢产业应用态势的基础上,提出了深化研究高效电解池的基础科学问题和核心部件、进一步降低制氢成本、开展风光耦合制氢优化布局和制度保障研究等发展建议,以期促进可再生能源制氢产业的高质量发展。

图片

图1

参考文献

[ 1 ] 程文姬, 赵磊, 郗航, 等. “十四五” 规划下氢能政策与电解水制氢研究 [J]. 热力发电, 2022, 51(11): 181‒188.
Cheng W J, Zhao L, Xi H, et al. Research on hydrogen energy policy and water-electrolytic hydrogen under the 14th Five-Year Plan [J]. Thermal Power Generation, 2022, 51(11): 181‒188.

[ 2 ] The role of CCUS in low-carbon power systems [EB/OL]. (2020-06-15)[2023-10-15]. https://www.iea.org/reports/the-role-of-ccus-in-low-carbon-power-systems.

[ 3 ] Akinyele D O, Rayudu R K. Review of energy storage technologies for sustainable power networks [J]. Sustainable Energy Technologies and Assessments, 2014, 8: 74‒91.

[ 4 ] Yang W, Sun L, Tang J, et al. Multiphase fluid dynamics and mass transport modeling in a porous electrode toward hydrogen evolution reaction [J]. Industrial & Engineering Chemistry Research, 2022, 61: 8323‒8332.

[ 5 ] Zhou P F, Wong P K, Niu P D, et al. Anodized AlCoCrFeNi high-entropy alloy for alkaline water electrolysis with ultra-high performance [J]. Science China Materials, 2023, 66(3): 1033‒1041.

[ 6 ] 顾方伟, 杨雪, 林伟. 质子交换膜电解水氧化铱析氧催化剂的研究进展 [J]. 石油炼制与化工, 2022, 53(9): 115‒122.
Gu F W, Yang X, Lin W. Research advancenment of iridium oxide catalysts for the oxygen evolution reaction of proton exchange membrane water electrolysis [J]. Petroleum Processing and Petrochemicals, 2022, 53(9): 115‒122.

[ 7 ] Guo D D, Yu H M, Chi J. et al. Self-supporting NiFe LDHs@Co-OH-CO3 nanorod array electrode for alkaline anion exchange membrane water electrolyzer [J]. Journal of Electrochemistry, 2022, 28(9): 2214003.

[ 8 ] 张玉魁, 陈换军, 孙振新, 等. 高温固体氧化物电解水制氢效率与经济性 [J]. 广东化工, 2021, 48(18): 3‒6, 24.
Zhang Y K, Chen H J, Sun Z X, et al. Efficiency and economy of hydrogen production from high temperature solid oxide electrolysis of water [J]. Guangdong Chemical Industry, 2021, 48(18): 3‒6, 24.

[ 9 ] 温昶, 张博涵, 王雅钦, 等. 高效质子交换膜电解水制氢技术研究进展 [J]. 华中科技大学学报 (自然科学版), 2023, 51(1): 111‒122.
Wen C, Zhang B H, Wang Y Q, et al. Research progress of high efficiency proton exchange membrane water electrolysis technology [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(1): 111‒122.

[10] 张立栋, 陈怡冰, 龚明, 等. 质子交换膜电解水制氢影响因素的过程模拟 [J]. 综合智慧能源, 2022, 44(5): 88‒94.
Zhang L D, Chen Y B, Gong M, et al. Process simulation of factors affecting proton exchange membrane water electrolysis forhydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 88‒94.

[11] 郭秀盈, 李先明, 许壮, 等. 可再生能源电解制氢成本分析 [J]. 储能科学与技术, 2020, 9(3): 688‒695.
Guo X Y, Li X M, Xu Z, et al. Cost analysis of hydrogen production by electrolysis of renewable energy [J]. Energy Storage Science and Technology, 2020, 9(3): 688‒695.

[12] 葛磊蛟, 崔庆雪, 李明玮, 等. 风光波动性电源电解水制氢技术综述 [J]. 综合智慧能源, 2022, 44(5): 1‒14.
Ge L J, Cui Q X, Li M W, et al. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV [J]. Integrated Intelligent Energy, 2022, 44(5): 1‒14.

[13] Huang C J, Zong Y, You S, et al. Cooperative control of wind-hydrogen-SMES hybrid systems for fault-ride-through improvement and power smoothing [J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1‒7.

[14] 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测 [J]. 太阳能学报, 2021, 42(5): 252‒259.
Zhang N, Ge L J. Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm [J]. Acta Energiae Solaris Sinica, 2021, 42(5): 252‒259.

[15] Sahin M E, Okumus H İ, Aydemir M T. Implementation of an electrolysis system with DC/DC synchronous buck converter [J]. International Journal of Hydrogen Energy, 2014, 39(13): 6802‒6812.

[16] Garrigós A, Lizán J L, Blanes J M, et al. Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter [J]. International Journal of Hydrogen Energy, 2014, 39(36): 20907‒20919.

[17] Jia J Y, Seitz L C, Benck J D, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% [J]. Nature Communications, 2016, 7: 13237.

[18] Sørensen P, Hansen A D, Rosas P A C. Wind models for simulation of power fluctuations from wind farms [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 1381‒1402.

[19] Nanahara T, Asari M, Sato T, et al. Smoothing effects of distributed wind turbines. Part 1. Coherence and smoothing effects at a wind farm [J]. Wind Energy, 2004, 7(2): 61‒74.

[20] Harrouni S, Guessoum A, Maafi A. Classification of daily solar irradiation by fractional analysis of 10-Min-means of solar irradiance [J]. Theoretical and Applied Climatology, 2005, 80(1): 27‒36.

[21] Tomson T, Tamm G. Short-term variability of solar radiation [J]. Solar Energy, 2006, 80(5): 600‒606.

[22] Gandía L M, Oroz R, Ursúa A, et al. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions [J]. Energy & Fuels, 2007, 21(3): 1699‒1706.

[23] Schalenbach M, Carmo M, Fritz D L, et al. Pressurized PEM water electrolysis: Efficiency and gas crossover [J]. International Journal of Hydrogen Energy, 2013, 38(35): 14921‒14933.

[24] Schalenbach M, Stolten D. High-pressure water electrolysis: Electrochemical mitigation of product gas crossover [J]. Electrochimica Acta, 2015, 156: 321‒327.

[25] Stansberry J M, Brouwer J. Experimental dynamic dispatch of a 60 kW proton exchange membrane electrolyzer in power-to-gas application [J]. International Journal of Hydrogen Energy, 2020, 45(16): 9305‒9316.

[26] Bamisile O, Cai D S, Oluwasanmi A, et al. Comprehensive assessment, review, and comparison of AI models for solar irradiance prediction based on different time/estimation intervals [J]. Scientific Reports, 2022, 12: 9644.

[27] Lin M Y, Hourng L W. Effects of magnetic field and pulse potential on hydrogen production via water electrolysis [J]. International Journal of Energy Research, 2014, 38(1): 106‒116.

[28] Rocha F, de Radiguès Q, Thunis G, et al. Pulsed water electrolysis: A review [J]. Electrochimica Acta, 2021, 377: 138052.

[29] Frensch S H, Fouda-Onana F, Serre G, et al. Influence of the operation mode on PEM water electrolysis degradation [J]. International Journal of Hydrogen Energy, 2019, 44(57): 29889‒29898.

[30] Rakousky C, Reimer U, Wippermann K, et al. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis [J]. Journal of Power Sources, 2016, 326: 120‒128.

[31] Rakousky C, Reimer U, Wippermann K, et al. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power [J]. Journal of Power Sources, 2017, 342: 38‒47.

[32] Grigoriev S A, Dzhus K A, Bessarabov D G, et al. Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning [J]. International Journal of Hydrogen Energy, 2014, 39(35): 20440‒20446.

[33] Lettenmeier P, Wang R, Abouatallah R, et al. Durable membrane electrode assemblies for proton exchange membrane electrolyzer systems operating at high current densities [J]. Electrochimica Acta, 2016, 210: 502‒511.

[34] Cherevko S, Geiger S, Kasian O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 1. Metallic iridium [J]. Journal of Electroanalytical Chemistry, 2016, 773: 69‒78.

[35] Siracusano S, Baglio V, Van Dijk N, et al. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer [J]. Applied Energy, 2017, 192: 477‒489.

[36] Gago A S, Bürkle J, Lettenmeier P, et al. Degradation of proton exchange membrane (PEM) electrolysis: The influence of current density [J]. ECS Transactions, 2018, 86(13): 695‒700.

[37] Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review [J]. Renewable and Sustainable Energy Reviews, 2019, 111: 1‒14.

[38] Feng Q, Yuan X Z, Liu G Y, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies [J]. Journal of Power Sources, 2017, 366: 33‒55.

[39] Wang X Y, Zhang L S, Li G F, et al. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance [J]. Electrochimica Acta, 2015, 158: 253‒257.

[40] Marocco P, Sundseth K, Aarhaug T, et al. Online measurements of fluoride ions in proton exchange membrane water electrolysis through ion chromatography [J]. Journal of Power Sources, 2021, 483: 229179.

[41] Chandesris M, Médeau V, Guillet N, et al. Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density [J]. International Journal of Hydrogen Energy, 2015, 40(3): 1353‒1366.

[42] Gago A S, Ansar S A, Saruhan B, et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers [J]. Journal of Power Sources, 2016, 307: 815‒825.

[43] Price E. Durability and degradation issues in PEM electrolysis cells and its components [J]. Johnson Matthey Technology Review, 2017, 61(1): 47‒51.

[44] Alia S M, Stariha S, Borup R L. Electrolyzer durability at low catalyst loading and with dynamic operation [J]. Journal of the Electrochemical Society, 2019, 166(15): F1164‒F1172.

[45] Weiß A, Siebel A, Bernt M, et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer [J]. Journal of the Electrochemical Society, 2019, 166(8): F487‒F497.

[46] Siracusano S, Van Dijk N, Backhouse R, et al. Degradation issues of PEM electrolysis MEAs [J]. Renewable Energy, 2018, 123: 52‒57.

[47] Wang T Z, Cao X J, Jiao L F. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects [J]. Carbon Neutrality, 2022, 1(1): 21.

[48] Ayers K. High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes [J]. Current Opinion in Chemical Engineering, 2021, 33: 100719.

[49] Park J, Kang Z Y, Bender G, et al. Roll-to-roll production of catalyst coated membranes for low-temperature electrolyzers [J]. Journal of Power Sources, 2020, 479: 228819.

[50] Lickert T, Fischer S, Young J L, et al. Advances in benchmarking and round robin testing for PEM water electrolysis: Reference protocol and hardware [J]. Applied Energy, 2023, 352: 121898.

[51] 刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析 [J]. 电工技术学报, 2022, 37(11): 2888‒2896.
Liu W, Wan Y M, Xiong Y L, et al. Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision [J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2888‒2896.

[52] Yates J, Daiyan R, Patterson R, et al. Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis [J]. Cell Reports Physical Science, 2020, 1(10): 100209.

[53] 颜卓勇, 孔祥威. 非并网风电电解水制氢系统及应用研究 [J]. 中国工程科学, 2015, 17(3): 30‒34.
Yan Z Y, Kong X W. Research on non-grid-connected wind power water-electrolytic hydrogen production system and its applications [J]. Strategic Study of CAE, 2015, 17(3): 30‒34.

相关研究