期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2024年 第26卷 第2期 doi: 10.15302/J-SSCAE-2024.02.004

深海科学实验装备发展研究

1. 广东工业大学生态环境与资源学院,广州 510006;
2. 南方海洋科学与工程广东省实验室(广州),广州 511458;
3. 中国科学院南海海洋研究所,广州 510301

资助项目 :广东省六大产业专项(GDNRC[2023]30);中国工程院咨询项目“深海装备技术体系及发展战略研究”(2023-XZ-06);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML20190609, GML20230921) 收稿日期: 2024-02-14 修回日期: 2024-04-03 发布日期: 2024-04-24

下一篇 上一篇

摘要

深海孕育了世界上最大的生态系统,对深海相关演变规律的深刻认知将支撑人类社会的可持续发展;深海极端环境条件决定了开展原位实验作业非常困难,也对深海科学实验装备提出了苛刻的要求。本文从深海科学实验研究的视角出发,按照深海试验装备及试验场、深海原位探测与实验装备、深海环境模拟实验装备的主要划分,系统梳理了国内外深海科学实验装备的发展态势和面临的问题。我国在深海科学实验装备领域已形成了一批自主研发的装备技术,推动了深海科学研究进步,部分优势方向已跻身国际先进水平;但在高精尖装备及其关键核心技术方面未能构建成熟的产业链,导致部分装备发展受限、一些技术薄弱环节凸显。需要加强顶层谋划、协调技术攻关,建立激励机制、推动创新转化,建设示范平台、形成标准体系,突破传感技术、加快国产进程,加强国际合作、提升创新能力,以深海科学实验装备高质量发展推动深海科学研究和海洋强国建设。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Feng J C, Liang J Z, Cai Y P, et al. Deep-sea organisms research oriented by deep-sea technologies development [J]. Science Bulletin, 2022, 67(17): 1802‒1816.

[ 2 ] Liang J Z, Feng J C, Zhang S, et al. Role of deep-sea equipment in promoting the forefront of studies on life in extreme environments [J]. iScience, 2021, 24(11): 103299.

[ 3 ] Abukawa K, Asada A, Mizuno K, et al. Diagnostic evaluation of quay wall using three-dimensional acoustic measurement systems [R]. Tokyo: 2013 IEEE International Underwater Technology Symposium (UT), 2013.

[ 4 ] DeNolfo P, Harrison M, Thomson H, et al. South TOTO acoustic measurement facility (STAFAC) in-water systems design [R]. Quebec City: OCEANS, 2008.

[ 5 ] 许立坤, 李文军, 陈光章. 深海腐蚀试验技术 [J]. 海洋科学, 2005, 29(7): 1‒3.
Xu L K, Li W J, Chen G Z. Deep sea corrosion test technique [J]. Marine Sciences, 2005, 29(7): 1‒3.

[ 6 ] 马蕊, 赵修涛, 柳存根. 海洋水下立体观测技术装备发展研究 [J]. 中国工程科学, 2020, 22(6): 19‒25.
Ma R, Zhao X T, Liu C G. Development of marine equipment for underwater stereoscopic observation [J]. Strategic Study of CAE, 2020, 22(6): 19‒25.

[ 7 ] Parsons B S, Vogt P R, Haflidason H, et al. Sidescan and video exploration of the Storegga slide headwall region by submarine NR-1 [J]. Marine Geology, 2005, 219(2/3): 195‒205.

[ 8 ] Yücel M, Sievert S M, Vetriani C, et al. Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean) [J]. Chemical Geology, 2013, 356: 11‒20.

[ 9 ] Thorsnes T, Chand S, Brunstad H, et al. Strategy for detection and high-resolution characterization of authigenic carbonate cold seep habitats using ships and autonomous underwater vehicles on glacially influenced terrain [J]. Frontiers in Marine Science, 2019, 6: 708.

[10] Giddens J, Turchik A, Goodell W, et al. The national geographic society deep-sea camera system: A low-cost remote video survey instrument to advance biodiversity observation in the deep ocean [J]. Frontiers in Marine Science, 2021, 7: 601411.

[11] Guilini K, Soltwedel T, van Oevelen D, et al. Deep-sea nematodes actively colonise sediments, irrespective of the presence of a pulse of organic matter: Results from an in situ experiment [J]. PLoS One, 2011, 6(4): e18912.

[12] Szafranski K M, Deschamps P, Cunha M R, et al. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria [J]. Frontiers in Microbiology, 2015, 6: 162.

[13] Amano C, Reinthaler T, Sintes E, et al. A device for assessing microbial activity under ambient hydrostatic pressure: The in situ microbial incubator (ISMI) [J]. Limnology and Oceanography: Methods, 2023, 21(2): 69‒81.

[14] 王勇, 郑鹏飞, 贺丽生, 等. 深海生物原位实验与生态监测研究进展 [J]. 应用海洋学学报, 2022, 41(3): 543‒553.
Wang Y, Zheng P F, He L S, et al. Advances in deep-sea in situ biological research and ecosystem observation [J]. Journal of Applied Oceanography, 2022, 41(3): 543‒553.

[15] Pachiadaki M G, Taylor C, Oikonomou A, et al. In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 129: 223‒231.

[16] 冯景春, 梁健臻, 张偲, 等. 深海生物资源开发装备发展研究 [J]. 中国工程科学, 2020, 22(6): 67‒75.
Feng J C, Liang J Z, Zhang S, et al. Development of deep-sea biological resources exploitation equipment [J]. Strategic Study of CAE, 2020, 22(6): 67‒75.

[17] Park C B, Clark D S. Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii [J]. Applied and Environmental Microbiology, 2002, 68(3): 1458‒1463.

[18] Marietou A, Chastain R, Beulig F, et al. The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the gulf of Mexico following the deepwater horizon oil spill [J]. Frontiers in Microbiology, 2018, 9: 808.

[19] Cario A, Oliver G C, Rogers K L. Characterizing the piezosphere: The effects of decompression on microbial growth dynamics [J]. Frontiers in Microbiology, 2022, 13: 867340.

[20] Houghton J L, Seyfried W E Jr, Banta A B, et al. Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures [J]. Extremophiles: Life Under Extreme Conditions, 2007, 11(2): 371‒382.

[21] Callac N, Rouxel O, Lesongeur F, et al. Biogeochemical insights into microbe-mineral-fluid interactions in hydrothermal chimneys using enrichment culture [J]. Extremophiles, 2015, 19(3): 597‒617.

[22] Kim J, Lee J Y, Ahn T W, et al. Validation of strongly coupled geomechanics and gas hydrate reservoir simulation with multiscale laboratory tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104958.

[23] 蒋鹏, 王启, 张斌斌, 等. 深海装备耐压结构用钛合金材料应用研究 [J]. 中国工程科学, 2019, 21(6): 95‒101.
Jiang P, Wang Q, Zhang B B, et al. Application of titanium alloy materials for the pressure-resistant structure of deep diving equipment [J]. Strategic Study of CAE, 2019, 21(6): 95‒101.

[24] 宋宪仓, 杜君峰, 王树青, 等. 海洋科学装备研究进展与发展建议 [J]. 中国工程科学, 2020, 22(6): 76‒83.
Song X C, Du J F, Wang S Q, et al. Research progress of marine scientific equipment and development recommendations in China [J]. Strategic Study of CAE, 2020, 22(6): 76‒83.

[25] 胡震, 曹俊. 载人深潜技术的发展与应用 [J]. 中国工程科学, 2019, 21(6): 87‒94.
Hu Z, Cao J. Development and application of manned deep diving technology [J]. Strategic Study of CAE, 2019, 21(6): 87‒94.

[26] 冯景春, 梁健臻, 张偲, 等. 深海环境生态保护装备发展研究 [J]. 中国工程科学, 2020, 22(6): 56‒66.
Feng J C, Liang J Z, Zhang S, et al. Environmental and ecological protection equipment in deep sea [J]. Strategic Study of CAE, 2020, 22(6): 56‒66.

[27] Zhang X, Li L F, Du Z F, et al. Discovery of supercritical carbon dioxide in a hydrothermal system [J]. Science Bulletin, 2020, 65(11): 958‒964.

[28] Du Z F, Li Y, Chen J, et al. Feasibility investigation on deep ocean compact autonomous Raman spectrometer developed for in situ detection of acid radical ions [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(2): 545‒550.

[29] 董一飞, 罗文造, 梁前勇, 等. 坐底式潜标观测系统及其在天然气水合物区的试验性应用 [J]. 海洋地质与第四纪地质, 2017, 37(5): 195‒203.
Dong Y F, Luo W Z, Liang Q Y, et al. A newly developed bottom-supported submersible buoyant system and its testing application to a natural gas hydrate area [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 195‒203.

[30] 牟勇, 梁楚进, 蔺飞龙, 等. 自由投放式声学多普勒海流剖面观测及数据处理 [J]. 海洋学报, 2023, 45(4): 144‒153.
Mou Y, Liang C J, Lin F L, et al. Free-dropping acoustic Doppler Current profiler observation and data processing [J]. Haiyang Xuebao, 2023, 45(4): 144‒153.

[31] Du Z F, Zhang X, Xi S C, et al. In situ Raman spectroscopy study of synthetic gas hydrate formed by cold seep flow in the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 197‒206.

[32] Wang Y, Gao Z M, Li J, et al. Hadal water sampling by in situ microbial filtration and fixation (ISMIFF) apparatus [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 144: 132‒137.

[33] 王洪浩. 深海冷泉保温保压取样器结构设计及优化研究 [D]. 青岛: 青岛科技大学(硕士学位论文), 2020.
Wang H H. Study on the structural design and optimization of deep-sea cold spring thermal insulation and pressure retaining sampler [D]. Qingdao: Qingdao University of Science & Technology (Master´s thesis), 2020.

[34] 周朋, 王豪, 张培豪, 等. 全海深沉积物保压取样装置设计及试验研究 [J]. 工程科学与技术, 2023, 55(2): 252‒258.
Zhou P, Wang H, Zhang P H, et al. Design and experimental study of a pressure-holding sampling device for full-depth sediments [J]. Engineering Science and Technology, 2023, 55(2): 252‒258.

[35] 许可, 赵飞虎, 周鑫涛, 等. 深海生物原位保温保压装置设计方案研究 [J]. 机械研究与应用, 2022, 35(2): 62‒66.
Xu K, Zhao F H, Zhou X T, et al. Research on scheme of In-situ temperature and pressure preserving device for deep sea creatures [J]. Mechanical Research & Application, 2022, 35(2): 62‒66.

[36] 林鹏. 深海沉积物原位定植培养工作站系统设计 [D]. 杭州: 杭州电子科技大学(硕士学位论文), 2016.
Lin P. The design of deep-sea sediments in-situ colonization culture systems [D]. Hangzhou: Hangzhou Dianzi University(Master´s thesis), 2016.

[37] 王蕾, 王丽萍, 董纯明, 等. 南海深海氮循环微生物的原位培养与多样性分析 [J]. 应用海洋学学报, 2019, 38(1): 1‒13.
Wang L, Wang L P, Dong C M, et al. Deep sea in situ cultivation and diversity analysis of microorganism involved in nitrogen cycling in the South China Sea [J]. Journal of Applied Oceanography, 2019, 38(1): 1‒13.

[38] 杜增丰, 连超, 席世川, 等. 基于"发现"号缆控水下机器人的深海原位探测 / 取样 / 实验技术研发与科学应用 [J]. 现代物理知识, 2021, 33(1): 14‒18.
Du Z F, Lian C, Xi S C, et al. Research and scientific application of deep-sea in-situ detection/sampling/experimental technology based on the "Discovery" cable controlled underwater robot [J]. Modern Physics, 2021, 33(1): 14‒18.

[39] Zhang Y, Henriet J P, Bursens J, et al. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor [J]. Bioresource Technology, 2010, 101(9): 3132‒3138.

[40] Chen J W, Liu H L, Cai S Y, et al. Comparative transcriptome analysis of Eogammarus possjeticus at different hydrostatic pressure and temperature exposures [J]. Scientific Reports, 2019, 9(1): 3456.

[41] Li P, Feng J C, Yang Z F, et al. Kinetic behaviors of methane hydrate formation with bubble seeping at conditions of "Haima" cold seep [J]. Energy & Fuels, 2021, 35(15): 12132‒12141.

[42] Xie Y, Feng J C, Hu W Q, et al. Deep-sea sediment and water simulator for investigation of methane seeping and hydrate formation [J]. Journal of Marine Science and Engineering, 2022, 10(4): 514.

[43] Xie Y, Feng J C, Sun L W, et al. Coupled simulation of hydrate-bearing and overburden sedimentary layers to study hydrate dissociation and methane leakage [J]. Journal of Marine Science and Engineering, 2022, 10(5): 668.

[44] 董胜, 廖振焜, 于立伟, 等. 海洋科考装备技术发展战略研究 [J]. 中国工程科学, 2023, 25(3): 33‒41.
Dong S, Liao Z K, Yu L W, et al. Development strategy for marine scientific equipment and technologies [J]. Strategic Study of CAE, 2023, 25(3): 33‒41.

[45] 王军成, 孙继昌, 刘岩, 等. 我国海洋监测仪器装备发展分析及展望 [J]. 中国工程科学, 2023, 25(3): 42‒52.
Wang J C, Sun J C, Liu Y, et al. Research progress and prospect of marine monitoring instruments and equipment in China [J]. Strategic Study of CAE, 2023, 25(3): 42‒52.

相关研究