期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2024年 第26卷 第2期 doi: 10.15302/J-SSCAE-2024.02.006

水下无线通信装备发展研究

中国船舶科学研究中心,江苏无锡 214000

资助项目 :中国工程院咨询项目“深海装备技术体系及发展战略研究”(2023-XZ-06) 收稿日期: 2024-02-27 修回日期: 2024-03-25 发布日期: 2024-04-10

下一篇 上一篇

摘要

水下无线通信(UWC)装备提供水下环境中信息传递和数据交换的能力,是支撑海洋科学研究、水下组网监测、水下协同作业、海洋安全维护等应用的重要装备类型。本文从水声通信、水下光通信、水下电磁波通信、水下磁感应通信4类主要的UWC装备出发,深入剖析了各自面临的技术难点,全面梳理了相关装备的国内外发展现状,进而凝练了UWC装备未来发展趋势。着眼我国UWC行业发展,辨识了整体差距、底层共性问题、顶层体系等方面的发展困境,提出了攻关基础机理与共性问题、聚焦突破行业核心方向、明晰装备顶层体系架构、完善保障措施与扶持政策等发展建议。相关内容可为把握UWC装备发展态势、布局UWC装备研制与应用等提供参考和启示。

图片

图1

参考文献

[ 1 ] 金永明‍‍. 中国建设海洋强国的成就与任务 [J]‍. 中国海洋大学学报(社会科学版), 2022 (3): 1‒3‍.
Jin Y M‍. Achievements and tasks of building China into a maritime power [J]‍. Journal of Ocean University of China (Social Sciences), 2022 (3): 1‒3‍.

[ 2 ] 朱敏, 武岩波‍. 水声通信技术进展 [J]‍. 中国科学院院刊, 2019, 34(3): 289‒296‍.
Zhu M, Wu Y B‍. Development of underwater acoustic communication technology [J]‍. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 289‒296‍.

[ 3 ] 夏庆生‍. 水下可见光通信技术发展与应用 [J]‍. 水雷战与舰船防护, 2016, 24(2): 37‒42‍.
Xia Q S‍. Developments and applications of visible light communication technology [J]‍. Mine Warfare & Ship Self-Defence, 2016, 24(2): 37‒42‍.

[ 4 ] 陶雯, 陈鼎鼎, 何宁宁‍. 国外海军潜艇通信技术与装备发展 [J]‍. 通信技术, 2015, 48(4): 375‒381‍.
Tao W, Chen D D, He N N‍. Development of foreign navy submarine communication technology and equipment [J]‍. Communications Technology, 2015, 48(4): 375‒381‍.

[ 5 ] Akyildiz I F, Wang P, Sun Z‍. Realizing underwater communication through magnetic induction [J]‍. IEEE Communications Magazine, 2015, 53(11): 42‒48‍.

[ 6 ] 李梅菊‍. 水下无线传感器网络综述 [J]‍. 重庆理工大学学报(自然科学), 2016, 30(8): 92‒98, 121‍.
Li M J‍. Overview of underwater wireless sensor networks [J]‍. Journal of Chongqing University of Technology (Natural Science), 2016, 30(8): 92‒98, 121‍.

[ 7 ] 刘伯胜, 黄益旺, 陈文剑, 等‍. 水声学原理 [M]‍. 北京: 科学出版社, 2019‍.
Liu B S, Huang Y W, Chen W J, et al‍. Principles of hydroacoustics [M]‍. Beijing: Science Press, 2019‍.

[ 8 ] 贾宁, 黄建纯‍. 水声通信技术综述 [J]‍. 物理, 2014, 43(10): 650‒657‍.
Jia N, Huang J C‍. An overview of underwater acoustic communications [J]‍. Physics, 2014, 43(10): 650‒657‍.

[ 9 ] 杨健敏, 王佳惠, 乔钢, 等‍. 水声通信及网络技术综述 [J]‍. 电子与信息学报, 2024, 46(1): 1‒21‍.
Yang J M, Wang J H, Qiao G, et al‍. Review of underwater acoustic communication and network technology [J]‍. Journal of Electronics & Information Technology, 2024, 46(1): 1‒21‍.

[10] Zhou S L, Wang Z H‍. OFDM for underwater acoustic communications [M]‍. New York: John Wiley & Sons, Ltd., 2014‍.

[11] Hodges R P‍. Underwater acoustics: Analysis, design and performance of sonar [M]‍. New York: John Wiley & Sons, Ltd., 2011‍.

[12] Dhanak M R, Xiros N I‍. Springer handbook of ocean engineering [M]‍. Cham: Springer Cham, 2016‍.

[13] Huang J, Zhou S L, Willett P‍. Nonbinary LDPC coding for multicarrier underwater acoustic communication [J]‍. IEEE Journal on Selected Areas in Communications, 2008, 26(9): 1684‒1696‍.

[14] Chen R, Wu W, Zeng Q, et al‍. Construction and application of polar codes in OFDM underwater acoustic communication [J]‍. Applied Acoustics, 2023, 211: 109473‍.

[15] 马璐, 李梦瑶, 刘凇佐, 等‍. 多波束分集深海远程正交频分复用水声通信 [J]‍. 声学学报, 2022, 47(5): 579‒590‍.
Ma L, Li M Y, Liu S Z, et al‍. A multi-beam space diversity method for long-range underwater acoustic OFDM communication in deep water [J]‍. Acta Acustica, 2022, 47(5): 579‒590‍.

[16] 王巍‍. MIMO-OFDM水声通信关键技术研究 [D]‍. 哈尔滨: 哈尔滨工程大学(博士学位论文), 2014‍.
Wang W‍. The study of the key technologies for underwater acoustic communication based on MIMO-OFDM [D]‍. Harbin: Harbin Engineering University (Doctoral dissertation), 2014‍.

[17] 赵云江, 乔钢, 刘凇佐, 等‍. 带内全双工水声通信技术研究现状与展望 [J]‍. 数字海洋与水下攻防, 2021, 4(3): 195‒205‍.
Zhao Y J, Qiao G, Liu S Z, et al‍. Research status and prospect of In-band full-duplex underwater acoustic communication technology [J]‍. Digital Ocean & Underwater Warfare, 2021, 4(3): 195‒205‍.

[18] 马璐‍. 多用户OFDM水声通信技术研究 [D]‍. 哈尔滨: 哈尔滨工程大学(博士学位论文), 2016‍.
Ma L‍. Study on multiuser OFDM-based underwater acoustic communication [D]‍. Harbin: Harbin Engineering University (Doctoral dissertation), 2016‍.

[19] Qarabaqi P, Stojanovic M‍. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels [J]‍. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701‒717‍.

[20] Jensen F B, Kuperman W A, Porter M B, et al‍. Computational ocean acoustics [M]‍. New York: Springer New York, 2011‍.

[21] Stojanovic M, Preisig J‍. Underwater acoustic communication channels: Propagation models and statistical characterization [J]‍. IEEE Communications Magazine, 2009, 47(1): 84‒89‍.

[22] Etter P C‍. Underwater acoustic modeling and simulation [M]‍. Boca Raton: CRC Press, 2018

[23] 乔钢, 王巍, 刘凇佐, 等‍. 改进的多输人多输出正交频分复用水声通信判决反馈信道估计算法 [J]‍. 声学学报, 2016, 41(1): 94‒104‍.
Qiao G, Wang W, Liu S Z, et al‍. An improved decision feedback channel estimation algorithm for multiple-input multiple-output orthogonal frequency division multiplexing underwater acoustic communication [J]‍. Acta Acustica, 2016, 41(1): 94‒104‍.

[24] 许浩, 朱敏, 武岩波‍. 一种水声通信中的多阵元Turbo均衡算法 [J]‍. 电子与信息学报, 2014, 36(6): 1465‒1471‍.
Xu H, Zhu M, Wu Y B‍. An algorithm of multi-array turbo equalization of underwater acoustic communication [J]‍. Journal of Electronics & Information Technology, 2014, 36(6): 1465‒1471‍.

[25] Ahmed R, Stojanovic M‍. Joint power and rate control with constrained resources for underwater acoustic channels [C]‍. Washington DC: OCEANS 2015‒MTS/IEEE Washington, 2015‍.

[26] Radosevic A, Ahmed R, Duman T M‍. Adaptive OFDM modulation for underwater acoustic communications: Design considerations and experimental results [J]‍. IEEE Journal of Oceanic Engineering, 2013, 39(2): 357‒370‍.

[27] 赵亮, 朱维庆, 朱敏‍. 一种用于水声相干通信系统的自适应均衡算法 [J]‍. 电子与信息学报, 2008, 30(3): 648‒651‍.
Zhao L, Zhu W Q, Zhu M‍. An adaptive equalization algorithm for underwater acoustic coherent communication system [J]‍. Journal of Electronics & Information Technology, 2008, 30(3): 648‒651‍.

[28] Li B S, Zhou S L, Stojanovic M, et al‍. Non-uniform Doppler compensation for zero-padded OFDM over fast-varying underwater acoustic channels [C]‍. Aberdeen: OCEANS 2007‒Europe, 2007‍.

[29] Li B S, Zhou S L, Stojanovic M, et al‍. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts [J]‍. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198‒209‍.

[30] Feng X, Esmaiel H, Wang J, et al‍. Underwater acoustic communications based on OTFS [C]‍. Beijing: 2020 15th IEEE International Conference on Signal Processing (ICSP), 2020‍.

[31] 赵云玲‍. 水声通信OFDM信号侦察与干扰技术研究 [D]‍. 哈尔滨: 哈尔滨工程大学(硕士学位论文), 2020.
Zhao Y L. Research on reconnaissance and interference technology of underwater acoustic communication OFDM signal [D]. Harbin: Harbin Engineering University (Master´s thesis), 2020.

[32] 董阳泽, 张刚强, 印明明‍. 网络化水声对抗技术 [M]‍. 北京: 电子工业出版社, 2012‍.
Dong Y Z, Zhang G Q, Yin M M‍. Networked underwater acoustic countermeasure technology [M]‍. Beijing: Publishing House of Electronics Industry, 2012‍.

[33] 刘凇佐, 乔钢, 尹艳玲‍. 一种利用海豚叫声的仿生水声通信方法 [J]‍. 物理学报, 2013, 62(14): 291‒298‍.
Liu S Z, Qiao G, Yin Y L‍. Bionic underwater acoustic communication using dolphin sounds [J]‍. Acta Physica Sinica, 2013, 62(14): 291‒298‍.

[34] 王彪, 刘光杰, 戴跃伟‍. 一种基于船舶辐射噪声的水声隐蔽通信方法及系统: CN201210403996‍.1 [P]‍. 2013-02-06‍.
Wang B, Liu G J, Dai Y W‍. An underwater acoustic covert communication method and system based on ship radiation noise: CN201210403996‍.1 [P]‍. 2013-02-06‍.

[35] Frank H, Stojan R‍. High bandwidth underwater optical communication [J]‍. Applied Optics, 2008, 47(2): 277‒283‍.

[36] Lu H H, Li C Y, Lin H H, et al‍. An 8 m/9‍.6 gbps underwater wireless optical communication system [J]‍. IEEE Photonics Journal, 2016, 8(5): 1‒7‍.

[37] Tsai C L, Lu Y C, Chang S H‍. InGaN LEDs fabricated with parallel-connected multi-pixel geometry for underwater optical communications [J]‍. Optics Laser Technology, 2019, 118: 69‒74‍.

[38] Cochenour B, Mullen L, Laux A‍. Phase coherent digital communications for wireless optical links in turbid underwater environments [C]‍. Vancouver: OCEANS 2007, 2007‍.

[39] 林木泉, 杨少程‍. 水下光通信技术发展现状 [J]‍. 广东通信技术, 2023, 43(11): 75‒79‍.
Lin M Q, Yang S C‍. Development status of underwater optical communication technology [J]‍. Guangdong Communication Technology, 2023, 43(11): 75‒79‍.

[40] Sun X B, Kang C H, Kong M W, et al‍. A review on practical considerations and solutions in underwater wireless optical communication [J]‍. Journal of Lightwave Technology, 2020, 38(2): 421‒431‍.

[41] Zedini E, Oubei H M, Kammoun A, et al‍. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems [J]‍. IEEE Transactions on Communications, 2019, 67(4): 2893‒2907‍.

[42] Oubei H M, Sun X B, Ng T K, et al‍. Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence [C]‍. Lerici: 2018 Fourth Underwater Communications and Networking Conference, 2018‍.

[43] Oubei H M, ElAfandy R T, Park K H, et al‍. Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations [C]‍. Orlando: 2017 IEEE Photonics Conference, 2017‍.

[44] 张立妍, 蒋锐, 张龙, 等‍. 水下无线光通信中MIMO技术研究现状 [J]‍. 光通信研究, 2023 (4): 14‒20, 72‍.
Zhang L Y, Jiang R, Zhang L, et al‍. Research status of MIMO technology in underwater wireless optical communication [J]‍. Study on Optical Communications, 2023 (4): 14‒20, 72‍.

[45] Liu W H, Zou D F, Xu Z Y, et al‍. Non-line-of-sight scattering channel modeling for underwater optical wireless communication [C]‍. Shenyang: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, 2015‍.

[46] Al-Shamma´A A I, Shaw A, Saman S‍. Propagation of electromagnetic waves at MHz frequencies through seawater [J]‍. IEEE Transactions on Antennas and Propagation, 2004, 52(11): 2843‒2849‍.

[47] 窦智, 张彦敏, 刘畅, 等‍. AUV水下通信技术研究现状及发展趋势探讨 [J]‍. 舰船科学技术, 2020, 42(3): 93‒97‍.
Dou Z, Zhang Y M, Liu C, et al‍. Research status and future development trend of AUV underwater communication technology [J]‍. Ship Science and Technology, 2020, 42(3): 93‒97‍.

[48] Palmeiro A, Martin M, Crowther I, et al‍. Underwater radio frequency communications [C]‍. Santander: OCEANS 2011 IEEE‒Spain, 2011‍.

[49] 王毅凡, 周密, 宋志慧‍. 水下无线通信技术发展研究 [J]‍. 通信技术, 2014, 47(6): 589‒594‍.
Wang Y F, Zhou M, Song Z H‍. Development of underwater wireless communication technology [J]‍. Communications Technology, 2014, 47(6): 589‒594‍.

[50] Ali M F, Jayakody D N K, Perera T D, et al‍. Underwater communications: Recent advances [C]‍. Bhutan: International Conference on Emerging Technologies of Information and Communications, 2019‍.

[51] Che X H, Wells I, Dickers G, et al‍. Re-evaluation of RF electromagnetic communication in underwater sensor networks [J]‍. IEEE Communications Magazine, 2010, 48(12): 143‒151‍.

[52] Gussen C M G, Diniz P S R, Campos M L R, et al‍. A survey of underwater wireless communication technologies [J]‍. Journal of Communication and Information Systems, 2016, 31(1): 242‒255‍.

[53] Sojdehei J J, Wrathall P N, Dinn D F‍. Magneto-inductive (MI) communications [C]‍. Honolulu: MTS/IEEE Oceans 2001, 2001‍.

[54] Huang H, Zheng Y R‍. Node localization in 3-D by magnetic-induction communications in wireless sensor networks [C]‍. Anchorage: OCEANS 2017‒Anchorage, 2017‍.

[55] 朱睿超, 高俊奇, 毛智能, 等‍. 基于磁感应的跨介质通信技术研究 [J]‍. 数字海洋与水下攻防, 2022, 5(4): 335‒341‍.
Zhu R C, Gao J Q, Mao Z N, et al‍. Research on cross-medium communication technology based on magnetic induction [J]‍. Digital Ocean & Underwater Warfare, 2022, 5(4): 335‒341‍.

[56] Wei D B, Soto S S, Garcia J, et al‍. ROV assisted magnetic induction communication field tests in underwater environments [C]‍. Shenzhen: Proceedings of the 13th International Conference on Underwater Networks & Systems, 2018‍.

[57] Guo H Z, Sun Z, Wang P‍. Multiple frequency band channel modeling and analysis for magnetic induction communication in practical underwater environments [J]‍. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6619‒6632‍.

[58] Kisseleff S, Sackenreuter B, Akyildiz I F, et al‍. On capacity of active relaying in magnetic induction based wireless underground sensor networks [C]‍. London: 2015 IEEE International Conference on Communications, 2015‍.

[59] Gulbahar B, Akan O B‍. A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels [J]‍. IEEE Transactions on Wireless Communications, 2012, 11(9): 3326‒3334‍.

[60] Sun Z, Akyildiz I F, Kisseleff S, et al‍. Increasing the capacity of magnetic induction communications in RF-challenged environments [J]‍. IEEE Transactions on Communications, 2013, 61(9): 3943‒3952‍.

[61] Li S, Sun Y J, Shi W J, et al‍. Capacity of magnetic-induction MIMO communication for wireless underground sensor networks [J]‍. International Journal of Distributed Sensor Networks, 2015: 42632‍.

[62] 朱维庆, 朱敏, 武岩波, 等‍. 载人潜水器"蛟龙"号的水声通信信号处理 [J]‍. 声学学报, 2012, 37(6): 565‒573‍.
Zhu W Q, Zhu M, Wu Y B, et al‍. Signal processing in underwater acoustic communication system for manned deep submersible "Jiaolong" [J]‍. Acta Acustica, 2012, 37(6): 565‒573‍.

[63] 朱敏, 杨波, 刘烨瑶‍. "奋斗者"号全海深载人潜水器声学系统研制 [J]‍. 科技成果管理与研究, 2021, 16(9): 76‒78‍.
Zhu M, Yang B, Liu Y Y‍. Development of Struggler full-sea deep-sea manned submersible [J]‍. Management and Research on Scientific & Technological Achievements, 2021, 16(9): 76‒78‍.

[64] "悟空号"再创潜深纪录 [J]‍. 船舶工程, 2021, 43(11): 1‍.
"Wukong" set another record for diving depth [J]‍. Ship Engineering, 2021, 43(11): 1‍.

[65] 席瑞, 党谦谦, 何成兵, 等‍. 低复杂度单载波频域Turbo均衡水声通信技术 [J]‍. 水下无人系统学报, 2018, 26(5): 395‒402‍.
Xi R, Dang Q Q, He C B, et al‍. Underwater acoustic communication technology adopting low complexity single carrier frequency-domain turbo equalization [J]‍. Journal of Unmanned Undersea Systems, 2018, 26(5): 395‒402‍.

[66] Kong M W, Lyu W C, Ali T, et al‍. 10 m 9‍.51 Gb/s RGB laser diodes-based WDM underwater wireless optical communication [J]‍. Optics Express, 2017, 25(17): 20829‒20834‍.

[67] Liu X Y, Yi S Y, Zhou X L, et al‍. 34‍.5 m underwater optical wireless communication with 2‍.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation [J]‍. Optics Express, 2017, 25(22): 27937‒27947‍.

[68] 孙雷, 韩峰‍. 便携式ULF/VLF机械通信天线技术的研究进展 [J]‍. 电讯技术, 2021, 61(3): 384‒390‍.
Sun L, Han F‍. Research progress of portable mechanically based antenna project for ULF/VLF communication [J]‍. Telecommunication Engineering, 2021, 61(3): 384‒390‍.

[69] 郑强, 杨日杰, 陈佳琪‍. 海水中环天线的辐射特性研究 [J]‍. 舰船电子工程, 2012, 32(10): 126‒128‍.
Zheng Q, Yang R J, Chen J Q‍. Research on radiated properties of a loop antenna in sea [J]‍. Ship Electronic Engineering, 2012, 32(10): 126‒128‍.

[70] 王俊‍. 水下窄带高速电磁波通信技术研究 [D]‍. 长沙: 国防科技大学(硕士学位论文), 2019‍.
Wang J‍. Research on underwater narrowband high-speed electromagnetic wave communication technology [D]‍. Changsha: National University of Defense Technology (Master´s thesis), 2019‍.

[71] Wu Z Q, Xu J D, Li B‍. A high-speed digital underwater communication solution using electric current method [C]‍. Wuhan: 2010 2nd International Conference on Future Computer and Communication, 2010‍.

[72] Lin S C, Akyildiz I F, Wang P, et al‍. Distributed cross-layer protocol design for magnetic induction communication in wireless underground sensor networks [J]‍. IEEE Transactions on Wireless Communications, 2015, 14(7): 4006‒4019‍.

[73] 孙彦景, 潘东跃, 徐华, 等‍. 水下安全监测无线磁感应通信3D路径损耗 [J]‍. 中国矿业大学学报, 2019, 48(3): 616‒623‍.
Sun Y J, Pan D Y, Xu H, et al‍. Wireless magnetic-induction communication 3D path loss for underwater safety monitoring [J]‍. Journal of China University of Mining & Technology, 2019, 48(3): 616‒623‍.

相关研究