资源类型

期刊论文 574

年份

2024 2

2023 29

2022 31

2021 38

2020 29

2019 31

2018 32

2017 21

2016 19

2015 19

2014 32

2013 26

2012 25

2011 28

2010 32

2009 38

2008 42

2007 42

2006 10

2005 9

展开 ︾

关键词

数值模拟 3

残余应力 3

DX桩 2

k-ε模型 2

应力 2

应力波 2

应力状态 2

强度理论 2

ADV 1

CCUS 1

CFD 1

CO2利用 1

Cas12a 1

Chebyshev多项式 1

Colebrook隐式方程 1

D1 turnover / photoinhibition / photoprotection / photosynthesis / tomato / xanthophyll cycle 1

H2S应力腐蚀 1

HY-2 卫星 1

LED灯具;加速老化测试;中位寿命;滑动平均误差 1

展开 ︾

检索范围:

排序: 展示方式:

Prediction of the shear wave velocity

Amoroso SARA

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 83-92 doi: 10.1007/s11709-013-0234-6

摘要: The paper examines the correlations to obtain rough estimates of the shear wave velocity from non-seismic dilatometer tests (DMT) and cone penetration tests (CPT). While the direct measurement of is obviously preferable, these correlations may turn out useful in various circumstances. The experimental results at six international research sites suggest that the DMT predictions of from the parameters (material index), (horizontal stress index), (constrained modulus) are more reliable and consistent than the CPT predictions from (cone resistance), presumably because of the availability, by DMT, of the stress history index .

关键词: horizontal stress index     shear wave velocity     flat dilatometer test     cone penetration test    

Shear stress distribution prediction in symmetric compound channels using data mining and machine learning

Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1097-1109 doi: 10.1007/s11709-020-0634-3

摘要: Shear stress distribution prediction in open channels is of utmost importance in hydraulic structural engineering as it directly affects the design of stable channels. In this study, at first, a series of experimental tests were conducted to assess the shear stress distribution in prismatic compound channels. The shear stress values around the whole wetted perimeter were measured in the compound channel with different floodplain widths also in different flow depths in subcritical and supercritical conditions. A set of, data mining and machine learning algorithms including Random Forest (RF), M5P, Random Committee, KStar and Additive Regression implemented on attained data to predict the shear stress distribution in the compound channel. Results indicated among these five models; RF method indicated the most precise results with the highest value of 0.9. Finally, the most powerful data mining method which studied in this research compared with two well-known analytical models of Shiono and Knight method (SKM) and Shannon method to acquire the proposed model functioning in predicting the shear stress distribution. The results showed that the RF model has the best prediction performance compared to SKM and Shannon models.

关键词: compound channel     machine learning     SKM model     shear stress distribution     data mining models    

Effects of rotor and stator geometry on dissolution process and power consumption in jet-flow high shear

Lin Yang, Wenpeng Li, Junheng Guo, Wei Li, Baoguo Wang, Minqing Zhang, Jinli Zhang

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 384-398 doi: 10.1007/s11705-020-1928-7

摘要: The jet-flow high shear mixer (JF-HSM) is a new type of intensified equipment with special configurations of the rotor and the stator. The mass transfer property and power consumption were studied in the solid-liquid system for a series of JF-HSMs involving different configuration parameters, such as rotor diameter, rotor blade inclination, rotor blade bending direction, stator diameter, and stator bottom opening diameter. The flow characteristics were examined by computational fluid dynamic simulations. Results indicate that the turbulent power consumption of the JF-HSM is affected by the change in rotor blade inclination and stator bottom opening. With the increase in the shear head size and the change in the rotor into a backward-curved blade, the solid-liquid mass transfer rate can be remarkably increased under the same input power. Dimensionless correlations for the mass transfer coefficient and power consumption were obtained to guide the scale-up design and selection of such a new type of equipment to intensify the overall mixing efficiency.

关键词: jet-flow high shear mixer     solid particle dissolution     power consumption characteristics     CFD Simulation    

Research on the dynamic mechanical characteristics and turning tool life under the conditions of excessively heavy-duty turning

Genghuang HE, Xianli LIU, Fugang YAN

《机械工程前沿(英文)》 2012年 第7卷 第3期   页码 329-334 doi: 10.1007/s11465-012-0303-x

摘要:

The dynamic mechanical characteristics of excessively heavy-duty cutting were analyzed based on the cutting experiments with 2.25Cr-1Mo-0.25V steel used in hydrogenated cylindrical shells. By investigating the influence of dynamic mechanical characteristics on the tools’ failure in limited heavy-duty cutting processes, the model of dynamic shearing force in the cutting area was established. However, the experimental results showed that the dynamic shear flow stress in the cutting area greatly influenced the tools’ fatigue. The heavy-duty cutting tool was damaged in the form of a shearing fracture. Through a comprehensive analysis of the theory, the critical condition of the tools’ fracture under extreme loading was established.

关键词: extreme loading cutting     shear flow stress     dynamic cutting force     fatigue fracture    

Shear assessment of compression flanges of structural concrete T-beams

Bj?rn SCHüTTE,Viktor SIGRIST

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 354-361 doi: 10.1007/s11709-014-0082-z

摘要: In T-beams the force transfer from the web into the flange has to be studied. The general design procedure is based on a strut-and-tie (or a stress field) model which comprises spreading compressive and transverse tensile forces. As is known, strut-and-tie models represent the force flow within a structural member at ultimate. This procedure is sufficient for design purposes and in general, leads to safe results. For the assessment of a structure it may be worthwhile to improve the accuracy. For this purpose both web and flange have to be looked at more in detail. An advanced method for the analysis of webs in shear is the Generalized Stress Field Approach [ ]. This approach can be utilized for treating flanges, where the classical assumptions have to be adapted; in particular by considering the strain dependence of the concrete compressive strength and thus, defining a representative strain value. In the present contribution background and details of these aspects are given, and the corresponding calculation procedure is described. Theoretical results are compared with experimental data and show a reasonably good agreement. However, as the number of sufficiently documented tests is very limited no concluding findings are attained.

关键词: concrete structures     structural assessment     stress field analysis     shear    

非饱和土的塑性体应变与剪应变的相互作用原理

王靖涛

《中国工程科学》 2007年 第9卷 第11期   页码 11-15

摘要:

将岩土塑性体应变与剪应变的相互作用原理拓展到了非饱和土领域。除了塑性体应变与剪应变的相互作用外,在非饱和土中出现了两类新的相互作用,吸力-塑性体应变和孔隙气压力-塑性体应变。吸力具有二重性质,其对塑性体应变作用包括两个相反的方面。基于吸力性质,阐明了非饱和土的一些独特的性质,诸如有效应力参数的物理涵义,吸力对体积变化和前期固结压力的影响和湿陷机理等。另外,应用拓展的塑性体应变与剪应变相互作用原理,从理论上证明了非饱和土的临界状态线是存在的和唯一的,以及它与应力历史无关。

关键词: 塑性体应变与剪应变的相互作用原理     非饱和土     基质吸力     有效应力原理    

Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated

Xi CHEN,Linjiang YUAN,Wenjuan LU,Yuyou LI,Pei LIU,Kun NIE

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 324-333 doi: 10.1007/s11783-014-0627-3

摘要: Aerobic granules were formed in a conventional, continuous flow, completely mixed activated sludge system (CMAS). The reactor was inoculated with seed sludge containing few filaments and fed with synthetic municipal wastewater. The settling time of the sludge and the average dissolved oxygen (DO) of the reactor were 2 h and 4.2 mg·L , respectively. The reactor was agitated by a stirrer, with a speed of 250 r·min , to ensure good mixing.The granular sludge had good settleability, and the sludge volume index (SVI) was between 50 and 90 mL·g . The laser particle analyzer showed the diameter of the granules to be between 0.18 and 1.25 mm. A scanning electron microscope (SEM) investigation revealed the predominance of sphere-like and rod-like bacteria, and only few filaments grew in the granules. The microbial community structure of the granules was also analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Sequencing analysis indicated the dominant species were α, β, and γ- , , and . The data from the study suggested that aerobic granules could form, if provided with sufficient number of filaments and high shear force. It was also observed that a high height-to-diameter ratio of the reactor and short settling time were not essential for the formation of aerobic granular sludge.

关键词: aerobic granular sludge     completely mixed activated sludge system (CMAS)     continuous flow     shear force     filamentous bacteria     polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)    

基于纤维弯曲伸长模式的Z向钢针针尖形态优化

朱建勋,何建敏,王海燕,周之刚

《中国工程科学》 2003年 第5卷 第9期   页码 18-21

摘要:

分析了整体穿刺过程中纤维弯曲伸长机理,建立了钢针的力学模型,分别讨论了作用在针尖上的最大弯曲正应力、最大剪切应力以及穿刺阻力与针尖半径和针尖长度之间的关系,然后根据获得的结果对钢针针尖的形状进行了优化。

关键词: 整体穿刺     弯曲正应力     剪切应力     针尖半径     针尖长度     优化    

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 143-157 doi: 10.1007/s11709-016-0377-3

摘要: Light-frame timber buildings are often stabilized against lateral loads by using diaphragm action of roofs, floors and walls. The mechanical behavior of the sheathing-to-framing joints has a significant impact on the structural performance of shear walls. Most sheathing-to-framing joints show nonlinear load-displacement characteristics with plastic behavior. This paper is focused on the finite element modeling of shear walls. The purpose is to present a new shear connector element based on the theory of continuum plasticity. The incremental load-displacement relationship is derived based on the elastic-plastic stiffness tensor including the elastic stiffness tensor, the plastic modulus, a function representing the yield criterion and a hardening rule, and function representing the plastic potential. The plastic properties are determined from experimental results obtained from testing actual connections. Load-displacement curves for shear walls are calculated using the shear connector model and they are compared with experimental and other computational results. Also, the ultimate horizontal load-carrying capacity is compared to results obtained by an analytical plastic design method. Good agreements are found.

关键词: shear walls     wall diaphragms     finite element modelling     plastic shear connector     analytical modelling     experimental comparison    

Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action

Nazim Abdul NARIMAN, Raja Rizwan HUSSAIN, Ilham Ibrahim MOHAMMAD, Peyman KARAMPOUR

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1289-1300 doi: 10.1007/s11709-019-0548-0

摘要: There are many certain and uncertain design factors which have unrevealed rational effects on the generation of tensile damage and the stability of the circular tunnels during seismic actions. In this research paper, we have dedicated three certain and four uncertain design factors to quantify their rational effects using numerical simulations and the Sobol’s sensitivity indices. Main effects and interaction effects between the design factors have been determined supporting on variance-based global sensitivity analysis. The results detected that the concrete modulus of elasticity for the tunnel lining has the greatest effect on the tensile damage generation in the tunnel lining during the seismic action. In the other direction, the interactions between the concrete density and both of concrete modulus of elasticity and tunnel diameter have appreciable effects on the tensile damage. Furthermore, the tunnel diameter has the deciding effect on the stability of the tunnel structure. While the interaction between the tunnel diameter and concrete density has appreciable effect on the stability process. It is worthy to mention that Sobol’s sensitivity indices manifested strong efficiency in detecting the roles of each design factor in cooperation with the numerical simulations explaining the responses of the circular tunnel during seismic actions.

关键词: shear waves     Sobol’s sensitivity indices     maximum principal stress     maximum overall displacement     tensile damage    

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 331-356 doi: 10.1007/s11709-019-0596-5

摘要: This paper examines the structural response of reinforced concrete flat slabs, provided with fully-embedded shear-heads, through detailed three-dimensional nonlinear numerical simulations and parametric assessments using concrete damage plasticity models. Validations of the adopted nonlinear finite element procedures are carried out against experimental results from three test series. After gaining confidence in the ability of the numerical models to predict closely the full inelastic response and failure modes, numerical investigations are carried out in order to examine the influence of key material and geometric parameters. The results of these numerical assessments enable the identification of three modes of failure as a function of the interaction between the shear-head and surrounding concrete. Based on the findings, coupled with results from previous studies, analytical models are proposed for predicting the rotational response as well as the ultimate strength of such slab systems. Practical recommendations are also provided for the design of shear-heads in RC slabs, including the embedment length and section size. The analytical expressions proposed in this paper, based on a wide-ranging parametric assessment, are shown to offer a more reliable design approach in comparison with existing methods for all types of shear-heads, and are suitable for direct practical application.

关键词: non-linear numerical modelling     concrete damage plasticity     RC flat slabs     shear-heads     punching shear    

Behaviour of self-centring shear walls——A state of the art review

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 53-77 doi: 10.1007/s11709-022-0850-0

摘要: The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated construction due to the incorporation of prefabricated elements and segmental construction for different materials (e.g., concrete, masonry, and timber), reduced residual drifts, and little damage upon extreme seismic and wind loads. Concrete, masonry, and timber are often used for the construction of unbonded PT structural wall systems. Despite extensive research since the 1980s, there are no well-established design guidelines available on the shear wall configuration with the required energy dissipation system, joint’s locations and acceptance criteria for shear sliding, confinement, seismic performance factors, PT loss, PT force range and residual drifts of shear walls subjected to lateral loads. In this research a comprehensive state-of-the-art literature review was performed on self-centring shear wall system. An extensive study was carried out to collect a database of 100 concrete, masonry, and self-centring shear wall tests from the literature. The established database was then used to review shear walls’ configurations, material, and components to benchmark requirements applicable for design purposes. The behaviour of concrete, masonry and timber shear walls were compared and critically analysed. The general behaviour, force-displacement performance of the walls, ductility, and seismic response factors, were critically reviewed and analysed for different self-centring wall systems to understand the effect of different parameters including configurations of the walls, material used for construction of the wall (concrete, masonry, timber) and axial stress ratio. The outcome of this research can be used to better understand the behaviour of self-centring wall system in order to develop design guidelines for such walls.

关键词: self-centring shear walls     rocking walls     energy dissipation     seismic performance factors     PT loss     residual drift    

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 396-410 doi: 10.1007/s11709-023-0934-5

摘要: In this study, a new system consisting of a combination of braces and steel infill panels called the braced corrugated steel shear panel (BCSSP) is presented. To obtain the hysteretic behavior of the proposed system, the quasi-static cyclic performances of two experimental specimens were first evaluated. The finite element modeling method was then verified based on the obtained experimental results. Additional numerical evaluations were carried out to investigate the effects of different parameters on the system. Subsequently, a relationship was established to estimate the buckling shear strength of the system without considering residual stresses. The results obtained from the parametric study indicate that the corrugated steel shear panel (CSSP) with the specifications of a = 30 mm, t = 2 mm, and θ = 90° had the highest energy dissipation capacity and ultimate strength while the CSSP with the specifications of a = 30 mm, t = 2 mm, and θ = 30° had the highest initial stiffness. It can thus be concluded that the latter CSSP has the best structural performance and that increasing the number of corrugations, corrugation angle, and plate thickness and decreasing the sub-panel width generally enhance the performance of CSSPs in terms of the stability of their hysteretic behaviors.

关键词: trapezoidal corrugated plate     steel shear panel     braced steel shear panel     experimental study     buckling resistance.    

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 325-336 doi: 10.1007/s11709-014-0080-1

摘要: In determining the shear capacity of reinforced concrete beams, current codes do not provide any calculation method to evaluate the influence of web horizontal reinforcement, although they exist as structural reinforcements (or skin reinforcement). The present paper comprises results of 11 reinforced concrete beams in an effort to investigate the influence of web horizontal reinforcement on the shear behavior of reinforced concrete beams. The primary design variables are the shear-span-depth ratio, different reinforcement ratio of stirrups and web horizontal reinforcement. Influence of web horizontal reinforcement on crack patterns and failure mode was studied. It was found that web horizontal reinforcement can increase the shear capacity of the beams and restrain growth of inclined cracks effectively. Test results are very valuable, as very few references of shear tests can be found focusing on the effect of web horizontal reinforcement on the shear capacity of the beams.

关键词: reinforced concrete beam     shear strength     web horizontal reinforcement     experiments    

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1595-7

摘要:

● Mechanical behavior of MBT waste affected by loading rate was investigated.

关键词: Mechanically and biologically treated waste     Landfill     Triaxial test     Loading rate     Axial strain     Shear strength parameter    

标题 作者 时间 类型 操作

Prediction of the shear wave velocity

Amoroso SARA

期刊论文

Shear stress distribution prediction in symmetric compound channels using data mining and machine learning

Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK

期刊论文

Effects of rotor and stator geometry on dissolution process and power consumption in jet-flow high shear

Lin Yang, Wenpeng Li, Junheng Guo, Wei Li, Baoguo Wang, Minqing Zhang, Jinli Zhang

期刊论文

Research on the dynamic mechanical characteristics and turning tool life under the conditions of excessively heavy-duty turning

Genghuang HE, Xianli LIU, Fugang YAN

期刊论文

Shear assessment of compression flanges of structural concrete T-beams

Bj?rn SCHüTTE,Viktor SIGRIST

期刊论文

非饱和土的塑性体应变与剪应变的相互作用原理

王靖涛

期刊论文

Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated

Xi CHEN,Linjiang YUAN,Wenjuan LU,Yuyou LI,Pei LIU,Kun NIE

期刊论文

基于纤维弯曲伸长模式的Z向钢针针尖形态优化

朱建勋,何建敏,王海燕,周之刚

期刊论文

Modeling of shear walls using finite shear connector elements based on continuum plasticity

Ulf Arne GIRHAMMAR, Per Johan GUSTAFSSON, Bo KÄLLSNER

期刊论文

Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action

Nazim Abdul NARIMAN, Raja Rizwan HUSSAIN, Ilham Ibrahim MOHAMMAD, Peyman KARAMPOUR

期刊论文

Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads

Dan V. BOMPA, Ahmed Y. ELGHAZOULI

期刊论文

Behaviour of self-centring shear walls——A state of the art review

期刊论文

On braced trapezoidal corrugated steel shear panels: An experimental and numerical study

期刊论文

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

期刊论文

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

期刊论文