资源类型

期刊论文 4

年份

2021 1

2020 1

2015 1

2009 1

关键词

检索范围:

排序: 展示方式:

Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater

Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1076-1083 doi: 10.1007/s11783-015-0770-5

摘要: The effluent of a wastewater treatment plant was treated in a pilot plant for reclaimed water production through the denitrification biofilter (DNBF) process, ozonation (O ), and biologic aerated filtration (BAF). The combined process demonstrated good removal performance of conventional pollutants, including concentrations of chemical oxygen demand (27.8 mg·L ) and total nitrogen (9.9 mg·L ) in the final effluent, which met the local discharge standards and water reuse purposes. Micropollutants (e.g., antibiotics and endocrine-disrupting chemicals) were also significantly removed during the proposed process. Ozonation exhibited high antibiotic removal efficiencies, especially for tetracycline (94%). However, micropollutant removal efficiency was negatively affected by the nitrite produced by DNBF. Acute toxicity variations of the combined process were estimated by utilizing luminescent bacteria. Inhibition rate increased from 9% to 15% during ozonation. Carbonyl compound concentrations (e.g., aldehydes and ketones) also increased by 58% as by-products, which consequently increased toxicity. However, toxicity eventually became as low as that of the influent because the by-products were effectively removed by BAF. The combined DNBF/O /BAF process is suitable for the advanced treatment of reclaimed water because it can thoroughly remove pollutants and toxicity.

关键词: wastewater treatment     micropollutant removal     ozonation     biofiltration     toxicity    

Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review

Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1189-1

摘要: Published data was used to analyze the fate of ARGs in water treatment. Biomass removal leads to the reduction in absolute abundance of ARGs. Mechanism that filter biofilm maintain ARB/ARGs was summarized. Potential BAR risks caused by biofiltration and chlorination were proposed. The bacterial antibiotic resistome (BAR) is one of the most serious contemporary medical challenges. The BAR problem in drinking water is receiving growing attention. In this study, we focused on the distribution, changes, and health risks of the BAR throughout the drinking water treatment system. We extracted the antibiotic resistance gene (ARG) data from recent publications and analyzed ARG profiles based on diversity, absolute abundance, and relative abundance. The absolute abundance of ARG was found to decrease with water treatment processes and was positively correlated with the abundance of 16S rRNA (r2 = 0.963, p<0.001), indicating that the reduction of ARG concentration was accompanied by decreasing biomass. Among treatment processes, biofiltration and chlorination were discovered to play important roles in shaping the bacterial antibiotic resistome. Chlorination exhibited positive effects in controlling the diversity of ARG, while biofiltration, especially granular activated carbon filtration, increased the diversity of ARG. Both biofiltration and chlorination altered the structure of the resistome by affecting relative ARG abundance. In addition, we analyzed the mechanism behind the impact of biofiltration and chlorination on the bacterial antibiotic resistome. By intercepting influent ARG-carrying bacteria, biofilters can enrich various ARGs and maintain ARGs in biofilm. Chlorination further selects bacteria co-resistant to chlorine and antibiotics. Finally, we proposed the BAR health risks caused by biofiltration and chlorination in water treatment. To reduce potential BAR risk in drinking water, membrane filtration technology and water boiling are recommended at the point of use.

关键词: Drinking water treatment     Antibiotic resistance gene     Biofiltration     Chlorination    

Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage integrated biofilter: Performance and bioaerosol emissions

《环境科学与工程前沿(英文)》 2021年 第15卷 第3期 doi: 10.1007/s11783-021-1421-7

摘要:

A novel three-stage integrated biofilter (TSIBF) composed of acidophilic bacteria reaction segment (ABRS), fungal reaction segment (FRS) and heterotrophic bacteria reaction segment (HBRS) was constructed for the treatment of odors and volatile organic compounds (VOCs)from municipal solid waste (MSW) comprehensive treatment plants. The performance, counts of predominant microorganisms, and bioaerosol emissions of a full-scale TSIBF system were studied. High and stable removal efficiencies of hydrogen sulfide, ammonia and VOCs could be achieved with the TSIBF system, and the emissions of culturable heterotrophic bacteria, fungi and acidophilic sulfur bacteria were relatively low.

关键词: Biofiltration     Multi-stage biofilter     Volatile organic compounds     Waste gas treatment     Bioaerosol emissions    

Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based biofilter system

Dan WU, Chunyan ZHANG, Li HAO, Changjun GENG, Xie QUAN,

《环境科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 483-491 doi: 10.1007/s11783-009-0144-y

摘要: Waste gases from oil refining wastewater treatment plants are often characterized by the presence of multicomponent and various concentrations of compounds. An evaluation of the performance and feasibility of removing multicomponent volatile organic compounds (VOCs) in off-gases from oil refining wastewater treatment plants was conducted in a pilot-scale compost-based biofilter system. This system consists of two identical biofilters packed with compost and polyethylene (PE). This paper investigates the effects of various concentrations of nonmethane hydrocarbon (NMHC) and empty bed residence time (EBRT) on the removal efficiency of NMHC. Based on the experimental results and practical applications, an EBRT of 66 s was applied to the biofilter system. The removal efficiencies of NMHC were within the range of 47%―100%. At an EBRT of 66 s, the average removal efficiency of benzene, toluene, and xylene were more than 99%, 99%, and 100%, respectively. The results demonstrated that multicomponent VOCs in off-gases from the oil refining wastewater treatment plant could be successfully removed in the biofilter system, which may provide useful information concerning the design criteria and operation of full-scale biofilters.

关键词: biodegradation     volatile organic compounds (VOCs)     biofiltration     biofilter    

标题 作者 时间 类型 操作

Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater

Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG

期刊论文

Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review

Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu

期刊论文

Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage integrated biofilter: Performance and bioaerosol emissions

期刊论文

Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based biofilter system

Dan WU, Chunyan ZHANG, Li HAO, Changjun GENG, Xie QUAN,

期刊论文