资源类型

期刊论文 3

年份

2020 1

2019 1

2011 1

关键词

检索范围:

排序: 展示方式:

Cathodes with MnO

Songbo WEI, He LIU, Ran WEI, Lin CHEN

《能源前沿(英文)》 2019年 第13卷 第1期   页码 9-15 doi: 10.1007/s11708-019-0611-5

摘要: A series of cathodes with MnO catalysts of metal fuel battery were prepared. The catalyst slurry was treated by ultrasonic dispersion under the ultrasonic time of 20 min, 40 min and 60 min. The cathodes were also dried with the temperature of 90°C, 120°C and 150°C. Besides, the microstructures of the cathodes and discharging performance were investigated. The results indicated that the ultrasonic time and drying temperature had a remarkable influence on the electric current densities, but had little effect on the open-circuit voltage. The effects of oxygen on the current density and voltage of cathode were also studied, and it was found that the method of blowing oxygen to cathode could increase the current density of the metal fuel battery.

关键词: metal fuel battery     cathode     current density     ultrasonic dispersion     oxygen supply    

Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying

Kirsten BOBZIN, Nazlim BAGCIVAN, Lidong ZHAO, Ivica PETKOVIC, Jochen SCHEIN, Karsten HARTZ-BEHREND, Stefan KIRNER, José-Luis MARQUéS, Günter FORSTER

《机械工程前沿(英文)》 2011年 第6卷 第3期   页码 324-331 doi: 10.1007/s11465-011-0125-2

摘要:

Usage of a multiple-arcs system has significantly improved process stability and coating properties in air plasma spraying. However, there are still demands on understanding and controlling the physical process to determine process conditions for reproducible coating quality and homogeneity of coating microstructure. The main goal of this work is the application of numerical simulation for the prediction of the temperature profiles at the torch outlet for real process conditions. Behaviour of the gas flow and electric arcs were described in a three-dimensional numerical model. The calculated results showed the characteristic triangular temperature distribution at the torch nozzle outlet caused by three electric arcs. These results were compared with experimentally determined temperature distributions, which were obtained with specially developed computed tomography equipment for reconstructing the emissivity and temperature distribution of the plasma jet close to the torch exit. The calculated results related to temperature values and contours were verified for the most process parameters with experimental ones.

关键词: plasma spraying     electric arc     three-cathode plasma torch     numerical simulation     computed tomography    

One-step ball milling-prepared nano Fe

Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第2期 doi: 10.1007/s11783-019-1209-1

摘要: • Nano Fe2O3 and N-doped graphene was prepared via a one-step ball milling method. • The maximum power density of Fe-N-G in MFC was 390% of that of pristine graphite. • Active sites like nano Fe2O3, pyridinic N and Fe-N groups were formed in Fe-N-G. • The improvement of Fe-N-G was due to full exposure of active sites on graphene. Developing high activity, low-cost and long durability catalysts for oxygen reduction reaction is of great significance for the practical application of microbial fuel cells. The full exposure of active sites in catalysts can enhance catalytic activity dramatically. Here, novel Fe-N-doped graphene is successfully synthesized via a one-step in situ ball milling method. Pristine graphite, ball milling graphene, N-doped graphene and Fe-N-doped graphene are applied in air cathodes, and enhanced performance is observed in microbial fuel cells with graphene-based catalysts. Particularly, Fe-N-doped graphene achieves the highest oxygen reduction reaction activity, with a maximum power density of 1380±20 mW/m2 in microbial fuel cells and a current density of 23.8 A/m2 at –0.16 V in electrochemical tests, which are comparable to commercial Pt and 390% and 640% of those of pristine graphite. An investigation of the material characteristics reveals that the superior performance of Fe-N-doped graphene results from the full exposure of Fe2O3 nanoparticles, pyrrolic N, pyridinic N and excellent Fe-N-G active sites on the graphene matrix. This work not only suggests the strategy of maximally exposing active sites to optimize the potential of catalysts but also provides promising catalysts for the use of microbial fuel cells in sustainable energy generation.

关键词: Microbial fuel cells     Air cathodes     Nano Fe2O3 and nitrogen-doped graphene     Oxygen reduction reaction    

标题 作者 时间 类型 操作

Cathodes with MnO

Songbo WEI, He LIU, Ran WEI, Lin CHEN

期刊论文

Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying

Kirsten BOBZIN, Nazlim BAGCIVAN, Lidong ZHAO, Ivica PETKOVIC, Jochen SCHEIN, Karsten HARTZ-BEHREND, Stefan KIRNER, José-Luis MARQUéS, Günter FORSTER

期刊论文

One-step ball milling-prepared nano Fe

Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang

期刊论文