资源类型

期刊论文 151

会议视频 4

年份

2024 1

2023 24

2022 24

2021 12

2020 12

2019 12

2018 11

2017 2

2016 8

2015 8

2014 6

2013 1

2012 2

2010 8

2009 3

2008 9

2007 4

2006 2

2005 1

2003 1

展开 ︾

关键词

低成本 2

增材制造 2

能源 2

4D打印 1

5G 1

CD44 1

F-B双相钢 1

GPS 1

RGB-D 1

TiC 1

互联网体系结构 1

亚高原地区 1

人-机交互 1

以内容为中心 1

仪器生产 1

传感器融合 1

低功耗;触发器;隐性;时钟控制技术;双边沿 1

信息-知识-智能的统一理论 1

倾斜镜;动态系统;输出输出耦合;物理建模;子空间辨识 1

展开 ︾

检索范围:

排序: 展示方式:

Dual enzyme activated fluorescein based fluorescent probe

Maria L. Odyniec, Jordan E. Gardiner, Adam C. Sedgwick, Xiao-Peng He, Steven D. Bull, Tony D. James

《化学科学与工程前沿(英文)》 2020年 第14卷 第1期   页码 117-121 doi: 10.1007/s11705-018-1785-9

摘要: A simple dual analyte fluorescein-based probe ( ) was synthesised containing -glucosidase ( -glc) and hydrogen peroxide (H O ) trigger units. The presence of -glc, resulted in fragmentation of the parent molecule releasing glucose and the slightly fluorescent mono-boronate fluorescein ( ). Subsequently, in the presence of glucose oxidase (GOx), the released glucose was catalytically converted to D-glucono- -lactone, which produced H O as a by-product. The GOx-produced H O resulted in classic H O -mediated boronate oxidation and the release of the highly emissive fluorophore, fluorescein. This unique cascade reaction lead to an 80-fold increase in fluorescence intensity.

关键词: chemosensors     dual-activation     GOx     fluorescence     β-glucosidase     molecular logic    

Enhanced activation of peroxymonosulfate by CNT-TiO

Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1161-0

摘要: CNT-TiO2 composite is used to activate PMS under UV-light assistance. Superior performance is due to the enhanced electron-transfer ability of CNT. SO4•−, •OH and 1O2 play key roles in the degradation of organic pollutants. In this work, a UV-light assisted peroxymonosulfate (PMS) activation system was constructed with the composite catalyst of multi-walled carbon nanotubes (CNT) - titanium dioxide (TiO2). Under the UV light irradiation, the photoinduced electrons generated from TiO2 could be continuously transferred to CNT for the activation of PMS to improve the catalytic performance of organic pollutant degradation. Meanwhile, the separation of photoinduced electron-hole pairs could enhance the photocatalysis efficiency. The electron spin resonance spectroscopy (EPR) and quenching experiments confirmed the generation of sulfate radical (SO4•−), hydroxyl radical (•OH) and singlet oxygen (1O2) in the UV/PMS/20%CNT-TiO2 system. Almost 100% phenol degradation was observed within 20 min UV-light irradiation. The kinetic reaction rate constant of the UV/PMS/20%CNT-TiO2 system (0.18 min−1) was 23.7 times higher than that of the PMS/Co3O4 system (0.0076 min−1). This higher catalytic performance was ascribed to the introduction of photoinduced electrons, which could enhance the activation of PMS by the transfer of electrons in the UV/PMS/CNT-TiO2 system.

关键词: Peroxymonosulfate activation     Carbon nanotubes     TiO2     Water treatment    

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 387-394 doi: 10.1007/s11705-022-2250-3

摘要: Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

关键词: self-activation     zinc organic salts     abundant mesopores     symmetric supercapacitor     liquid electrolyte    

Enhanced performance of oxygen vacancies on CO adsorption and activation over different phases of ZrO

《能源前沿(英文)》 2023年 第17卷 第4期   页码 545-554 doi: 10.1007/s11708-023-0867-7

摘要: The effect of oxygen vacancies on the adsorption and activation of CO2 on the surface of different phases of ZrO2 is investigated by density functional theory (DFT) calculations. The calculations show that the oxygen vacancies contribute greatly to both the adsorption and activation of CO2. The adsorption energy of CO2 on the c-ZrO2, t-ZrO2 and, m-ZrO2 surfaces is enhanced to 5, 4, and 3 folds with the help of oxygen vacancies, respectively. Moreover, the energy barrier of CO2 dissociation on the defective surfaces of c-ZrO2, t-ZrO2, and m-ZrO2 is reduced to 1/2, 1/4, and 1/5 of the perfect surface with the assistance of oxygen vacancies. Furthermore, the activation of CO2 on the ZrO2 surface where oxygen vacancies are present, and changes from an endothermic reaction to an exothermic reaction. This finding demonstrates that the presence of oxygen vacancies promotes the activation of CO2 both kinetically and thermodynamically. These results could provide guidance for the high-efficient utilization of CO2 at an atomic scale.

关键词: CO2 activation     oxygen vacancies     ZrO2     different phases    

A density functional theory study of methane activation on MgO supported NiM cluster: role of M on C–Hactivation

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1485-1492 doi: 10.1007/s11705-022-2169-8

摘要: Methane activation is a pivotal step in the application of natural gas converting into high-value added chemicals via methane steam/dry reforming reactions. Ni element was found to be the most widely used catalyst. In present work, methane activation on MgO supported Ni–M (M = Fe, Co, Cu, Pd, Pt) cluster was explored through detailed density functional theory calculations, compared to pure Ni cluster. CH4 adsorption on Cu promoted Ni cluster requires overcoming an energy of 0.07 eV, indicating that it is slightly endothermic and unfavored to occur, while the adsorption energies of other promoters M (M = Fe, Co, Pd and Pt) are all higher than that of pure Ni cluster. The role of M on the first C–H bond cleavage of CH4 was investigated. Doping elements of the same period in Ni cluster, such as Fe, Co and Cu, for C–H bond activation follows the trend of the decrease of metal atom radius. As a result, Ni–Fe shows the best ability for C–H bond cleavage. In addition, doping the elements of the same family, like Pd and Pt, for CH4 activation is according to the increase of metal atom radius. Consequently, C–H bond activation demands a lower energy barrier on Ni–Pt cluster. To illustrate the adsorptive dissociation behaviors of CH4 at different Ni–M clusters, the Mulliken atomic charge was analyzed. In general, the electron gain of CH4 binding at different Ni–M clusters follows the sequence of Ni–Cu (–0.02 e) < Ni (–0.04 e) < Ni–Pd (–0.08 e) < Ni–Pt (–0.09 e) < Ni–Co (–0.10 e) < Ni–Fe (–0.12 e), and the binding strength between catalysts and CH 4 raises with the CH4 electron gain increasing. This work provides insights into understanding the role of promoter metal M on thermal-catalytic activation of CH4 over Ni/MgO catalysts, and is useful to interpret the reaction at an atomic scale.

关键词: CH4 dissociation     Ni–M     C–H bond activation     charge transfer    

Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves

S. Surender REDDY,P. R. BIJWE,A. R. ABHYANKAR

《能源前沿(英文)》 2016年 第10卷 第4期   页码 409-423 doi: 10.1007/s11708-016-0431-9

摘要: This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency, using the coordinated action of fast and slow reserves, for secure operation with minimum overall cost. It considers the reserves supplied by the conventional thermal generators (spinning reserves), hydro power units and load demands (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The proposed reserve activation approaches are solved using the genetic algorithm, and some of the simulation results are also compared using the Matlab optimization toolbox and the general algebraic modeling system (GAMS) software. The simulation studies are performed on the IEEE 30, 57 and 300 bus test systems. These results demonstrate the advantage of the proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.

关键词: demand-side reserves     dynamic reserve activation approach     hydro power units     post contingency     sequential reserve activation approach     spinning reserves    

Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of

《医学前沿(英文)》 doi: 10.1007/s11684-023-1010-1

摘要: Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of CD19-specific CAR T-cells via TGF-β signaling

关键词: exosomes induce activation     impair function CD19     exosomal CD19 antigen    

Coronary leukocyte activation in relation to progression of coronary artery disease

null

《医学前沿(英文)》 2016年 第10卷 第1期   页码 85-90 doi: 10.1007/s11684-016-0435-1

摘要:

Leukocyte activation has been linked to atherogenesis, but there is little in vivo evidence for its role in the progression of atherosclerosis. We evaluated the predictive value for progression of coronary artery disease (CAD) of leukocyte activation markers in the coronary circulation. Monocyte and neutrophil CD11b, neutrophil CD66b expression and intracellular neutrophil myeloperoxidase (MPO) in the coronary arteries were determined by flow cytometry in patients undergoing coronary angiography. The primary outcome included fatal and nonfatal myocardial infarction or arterial vascular intervention due to unstable angina pectoris. In total 99 subjects who were included, 70 had CAD at inclusion (26 patients had single-vessel disease, 18 patients had two-vessel disease and 26 patients had three-vessel disease). The median follow-up duration was 2242 days (interquartile range: 2142–2358). During follow-up, 13 patients (13%) developed progression of CAD. Monocyte CD11b, neutrophil CD11b and CD66b expression and intracellular MPO measured in blood obtained from the coronary arteries were not associated with the progression of CAD. These data indicate that coronary monocyte CD11b, neutrophil CD11b and CD66b expression and intracellular MPO do not predict the risk of progression of CAD.

关键词: coronary artery disease     inflammation     integrin     myeloperoxidase     leukocyte activation    

NETO2 promotes melanoma progression via activation of the Ca/CaMKII signaling pathway

《医学前沿(英文)》 2023年 第17卷 第2期   页码 263-274 doi: 10.1007/s11684-022-0935-0

摘要: Melanoma is the most aggressive cutaneous tumor. Neuropilin and tolloid-like 2 (NETO2) is closely related to tumorigenesis. However, the functional significance of NETO2 in melanoma progression remains unclear. Herein, we found that NETO2 expression was augmented in melanoma clinical tissues and associated with poor prognosis in melanoma patients. Disrupting NETO2 expression markedly inhibited melanoma proliferation, malignant growth, migration, and invasion by downregulating the levels of calcium ions (Ca2+) and the expression of key genes involved in the calcium signaling pathway. By contrast, NETO2 overexpression had the opposite effects. Importantly, pharmacological inhibition of CaMKII/CREB activity with the CaMKII inhibitor KN93 suppressed NETO2-induced proliferation and melanoma metastasis. Overall, this study uncovered the crucial role of NETO2-mediated regulation in melanoma progression, indicating that targeting NETO2 may effectively improve melanoma treatment.

关键词: melanoma     neuropilin and tolloid-like 2     Ca2+/CaMKII signaling pathway    

Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1706-0

摘要:

● A CNT filter enabled effective KMnO4 activation via facilitated electron transfer.

关键词: KMnO4     Carbon nanotubes     Non-radical pathway     Electron transfer     Water treatment    

The role of manganese oxides in the activation of peroxymonosulfate (PMS)

Jianzhi Huang, Huichun Zhang

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1158-8

摘要: Manganese oxides (MnOx) have been demonstrated to be effective materials to activate Oxone (i.e., PMS) to degrade various contaminants. However, the contribution of direct oxidation by MnOx to the total contaminant degradation under acidic conditions was often neglected in the published work, which has resulted in different and even conflicting interpretations of the reaction mechanisms. Here, the role of MnOx (as both oxidants and catalysts) in the activation of Oxone was briefly discussed. The findings offered new insights into the reaction mechanisms in PMS-MnOx and provided a more accurate approach to examine contaminant degradation for water/wastewater treatment.

关键词: Peroxymonosulfate     Manganese oxides     Catalyst     Oxidant    

A novel task-oriented framework for dual-arm robotic assembly task

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 528-545 doi: 10.1007/s11465-021-0638-2

摘要: In industrial manufacturing, the deployment of dual-arm robots in assembly tasks has become a trend. However, making the dual-arm robots more intelligent in such applications is still an open, challenging issue. This paper proposes a novel framework that combines task-oriented motion planning with visual perception to facilitate robot deployment from perception to execution and finish assembly problems by using dual-arm robots. In this framework, visual perception is first employed to track the effects of the robot behaviors and observe states of the workpieces, where the performance of tasks can be abstracted as a high-level state for intelligent reasoning. The assembly task and manipulation sequences can be obtained by analyzing and reasoning the state transition trajectory of the environment as well as the workpieces. Next, the corresponding assembly manipulation can be generated and parameterized according to the differences between adjacent states by combining with the prebuilt knowledge of the scenarios. Experiments are set up with a dual-arm robotic system (ABB YuMi and an RGB-D camera) to validate the proposed framework. Experimental results demonstrate the effectiveness of the proposed framework and the promising value of its practical application.

关键词: dual-arm assembly     AI reasoning     intelligent system     task-oriented motion planning     visual perception    

to water purification for resource-constrained settings: Production of activated biochar by chemical activation

Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 194-208 doi: 10.1007/s11705-017-1647-x

摘要: A significant portion of the world’s population does not have access to safe drinking water. This problem is most acute in remote, resource-constrained rural settings in developing countries. Water filtration using activated carbon is one of the important steps in treating contaminated water. Lignocellulosic biomass is generally available in abundance in such locations, such as the African rain forests. Our work is focused on developing a simple method to synthesize activated biochar from locally available materials. The preparation of activated biochar with diammonium hydrogenphosphate (DAP) as the activating agent is explored under N flow and air. The study, carried out with cellulose as a model biomass, provides some insight into the interaction between DAP and biomass, as well as the char forming mechanism. Various characterization techniques such as N physisorption, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy are utilized to compare the properties between biochar formed under nitrogen and partial oxidative conditions. At a temperature of 450 °C, the loading of DAP over cellulose is systematically varied, and its effect on activation is examined. The activated biochar samples are predominantly microporous in the range of concentrations studied. The interaction of DAP with cellulose is investigated and the nature of bonding of the heteroatoms to the carbonaceous matrix is elucidated. The results indicate that the quality of biochar prepared under partial oxidation condition is comparable to that of biochar prepared under nitrogen, leading to the possibility of an activated biochar production scheme on a small scale in resource-constrained settings.

关键词: cellulose     DAP     activation     heteroatom     microporous    

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1581-1592 doi: 10.1007/s11705-023-2327-7

摘要: Herein, Cu–Al bimetallic oxide was synthesized and mixed with mesoporous silica spheres via a simple hydrothermal method. The prepared sample was then analyzed and employed to activate potassium peroxydisulfate for bisphenol A removal. Based on the results of X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy, Cu–Al bimetallic oxide was determined as CuO-Al2O3, and mesoporous silica spheres were found around the these particles. At 30 min, a bisphenol A degradation level of 90% was achieved, and it remained at over 60% after five consecutive cycles, indicating the catalyst’s superior capacity and stability. In terms of removal performance, the radical pathway (including SO4•‒, OH •, and O2•‒) and singlet oxygen (1O2) played minor roles, while electron migration between bisphenol A, potassium peroxydisulfate, and the catalyst played a dominant role. The introduction of Al2O3 promoted the formation of surface oxygen vacancies, which improved ligand complex formation between potassium peroxydisulfate and the catalyst, thereby facilitating electron migration. Furthermore, mesoporous silica spheres augment not only enhanced bisphenol A adsorption but also alleviated Cu leaching. Overall, this work is expected to provide significant support for the rational development of catalysts with high catalytic activity for persulfate activation via surface electron migration.

关键词: Cu–Al bimetallic oxides     mesoporous silica spheres     peroxydisulfate     bisphenol A    

Improved nitrogen removal in dual-contaminated surface water by photocatalysis

Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN

《环境科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 428-436 doi: 10.1007/s11783-012-0401-3

摘要: River waters in China have dual contamination by nutrients and recalcitrant organic compounds. In principle, the organic compounds could be used to drive denitrification of nitrate, thus arresting eutrophication potential, if the recalcitrant organics could be made bioavailable. This study investigated the potential to make the recalcitrant organics bioavailable through photocatalysis. Batch denitrification tests in a biofilm reactor demonstrated that dual-contaminated river water was short of available electron donor, which resulted in low total nitrogen (TN) removal by denitrification. However, the denitrification rate was increased significantly by adding glucose or by making the organic matters of the river water more bioavailable through photocatalysis. Photocatalysis for 15 min increased the Chemical Oxygen Demand (COD) of the river water from 53 to 84 mg·L and led to a 4-fold increase in TN removal. The increase in TN removal gave the same effect as adding 92 mg·L of glucose. During the photocatalysis experiments, the COD increased because photocatalysis transformed organic molecules from those that are resistant to dichromate oxidation in the COD test to those that can be oxidized by dichromate. This phenomenon was verified by testing photocatalysis of pyridine added to the river water. These findings point to the potential for N removal via denitrification after photocatalysis, and they also suggest that the rivers in China may be far more polluted than indicated by COD assays.

关键词: dual contamination     eutrophication     photocatalysis     remediation     surface water    

标题 作者 时间 类型 操作

Dual enzyme activated fluorescein based fluorescent probe

Maria L. Odyniec, Jordan E. Gardiner, Adam C. Sedgwick, Xiao-Peng He, Steven D. Bull, Tony D. James

期刊论文

Enhanced activation of peroxymonosulfate by CNT-TiO

Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan

期刊论文

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors

期刊论文

Enhanced performance of oxygen vacancies on CO adsorption and activation over different phases of ZrO

期刊论文

A density functional theory study of methane activation on MgO supported NiM cluster: role of M on C–Hactivation

期刊论文

Optimal dynamic emergency reserve activation using spinning, hydro and demand-side reserves

S. Surender REDDY,P. R. BIJWE,A. R. ABHYANKAR

期刊论文

Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of

期刊论文

Coronary leukocyte activation in relation to progression of coronary artery disease

null

期刊论文

NETO2 promotes melanoma progression via activation of the Ca/CaMKII signaling pathway

期刊论文

Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane

期刊论文

The role of manganese oxides in the activation of peroxymonosulfate (PMS)

Jianzhi Huang, Huichun Zhang

期刊论文

A novel task-oriented framework for dual-arm robotic assembly task

期刊论文

to water purification for resource-constrained settings: Production of activated biochar by chemical activation

Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank

期刊论文

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

期刊论文

Improved nitrogen removal in dual-contaminated surface water by photocatalysis

Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN

期刊论文