资源类型

期刊论文 1198

会议视频 70

会议信息 3

会议专题 1

年份

2024 48

2023 130

2022 163

2021 123

2020 88

2019 67

2018 80

2017 54

2016 48

2015 68

2014 43

2013 45

2012 35

2011 46

2010 42

2009 45

2008 25

2007 21

2006 12

2005 12

展开 ︾

关键词

能源 51

可持续发展 12

核能 11

可再生能源 10

节能 10

碳中和 8

能源安全 6

预测 5

2035 4

新能源 4

氢能 4

环境 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

节能环保 4

中长期 3

展开 ︾

检索范围:

排序: 展示方式:

An energy consumption prediction approach of die casting machines driven by product parameters

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 868-886 doi: 10.1007/s11465-021-0656-0

摘要: Die casting machines, which are the core equipment of the machinery manufacturing industry, consume great amounts of energy. The energy consumption prediction of die casting machines can support energy consumption quota, process parameter energy-saving optimization, energy-saving design, and energy efficiency evaluation; thus, it is of great significance for Industry 4.0 and green manufacturing. Nevertheless, due to the uncertainty and complexity of the energy consumption in die casting machines, there is still a lack of an approach for energy consumption prediction that can provide support for process parameter optimization and product design taking energy efficiency into consideration. To fill this gap, this paper proposes an energy consumption prediction approach for die casting machines driven by product parameters. Firstly, the system boundary of energy consumption prediction is defined, and subsequently, based on the energy consumption characteristics analysis, a theoretical energy consumption model is established. Consequently, a systematic energy consumption prediction approach for die casting machines, involving product, die, equipment, and process parameters, is proposed. Finally, the feasibility and reliability of the proposed energy consumption prediction approach are verified with the help of three die casting machines and six types of products. The results show that the prediction accuracy of production time and energy consumption reached 91.64% and 85.55%, respectively. Overall, the proposed approach can be used for the energy consumption prediction of different die casting machines with different products.

关键词: die casting machine     energy consumption prediction     product parameters    

Analysis and prediction of the influence of energy utilization on air quality in Beijing

LI Lin, HAO Jiming, HU Jingnan

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 339-344 doi: 10.1007/s11783-007-0058-5

摘要: This work evaluates the influence of energy consumption on the future air quality in Beijing, using 2000 as the base year and 2008 as the target year. It establishes the emission inventory of primary PM, SO and NO related to energy utilization in eight areas of Beijing. The air quality model was adopted to simulate the temporal and spatial distribution of each pollutant concentration in the eight urban areas. Their emission, concentration distribution, and sectoral share responsibility rate were analyzed, and air quality in 2008 was predicted. The industrial sector contributed above 40% of primary PM and SO resulting from energy consumption, while vehicles accounted for about 65% of NO. According to the current policy and development trend, air quality in the eight urban areas could become better in 2008 when the average concentrations of primary PM, SO and NO related to energy utilization at each monitored site are predicted to be about 25, 50 and 51 μg/m, respectively.

Modeling, simulation, and prediction of global energy indices: a differential approach

Stephen Ndubuisi NNAMCHI, Onyinyechi Adanma NNAMCHI, Janice Desire BUSINGYE, Maxwell Azubuike IJOMAH, Philip Ikechi OBASI

《能源前沿(英文)》 2022年 第16卷 第2期   页码 375-392 doi: 10.1007/s11708-021-0723-6

摘要: Modeling, simulation, and prediction of global energy indices remain veritable tools for econometric, engineering, analysis, and prediction of energy indices. Thus, this paper differentially modeled, simulated, and non-differentially predicated the global energy indices. The state-of-the-art of the research includes normalization of energy indices, generation of differential rate terms, and regression of rate terms against energy indices to generate coefficients and unexplained terms. On imposition of initial conditions, the solution to the system of linear differential equations was realized in a Matlab environment. There was a strong agreement between the simulated and the field data. The exact solutions are ideal for interpolative prediction of historic data. Furthermore, the simulated data were upgraded for extrapolative prediction of energy indices by introducing an innovative model, which is the synergy of deflated and inflated prediction factors. The innovative model yielded a trendy prediction data for energy consumption, gross domestic product, carbon dioxide emission and human development index. However, the oil price was untrendy, which could be attributed to odd circumstances. Moreover, the sensitivity of the differential rate terms was instrumental in discovering the overwhelming effect of independent indices on the dependent index. Clearly, this paper has accomplished interpolative and extrapolative prediction of energy indices and equally recommends for further investigation of the untrendy nature of oil price.

关键词: energy indices     differential model     normalization     simulation     inflation/deflation     predictive factor and prediction rate    

Big Data to support sustainable urban energy planning: The EvoEnergy project

Moulay Larbi CHALAL, Benachir MEDJDOUB, Nacer BEZAI, Raid SHRAHILY

《工程管理前沿(英文)》 2020年 第7卷 第2期   页码 287-300 doi: 10.1007/s42524-019-0081-9

摘要: Energy sustainability is a complex problem that needs to be tackled holistically by equally addressing other aspects such as socio-economic to meet the strict CO emission targets. This paper builds upon our previous work on the effect of household transition on residential energy consumption where we developed a 3D urban energy prediction system (EvoEnergy) using the old UK panel data survey, namely, the British household panel data survey (BHPS). In particular, the aim of the present study is to examine the validity and reliability of EvoEnergy under the new UK household longitudinal study (UKHLS) launched in 2009. To achieve this aim, the household transition and energy prediction modules of EvoEnergy have been tested under both data sets using various statistical techniques such as Chow test. The analysis of the results advised that EvoEnergy remains a reliable prediction system and had a good prediction accuracy (MAPE  5%) when compared to actual energy performance certificate data. From this premise, we recommend researchers, who are working on data-driven energy consumption forecasting, to consider merging the BHPS and UKHLS data sets. This will, in turn, enable them to capture the bigger picture of different energy phenomena such as fuel poverty; consequently, anticipate problems with policy prior to their occurrence. Finally, the paper concludes by discussing two scenarios of EvoEnergy development in relation to energy policy and decision-making.

关键词: urban energy planning     sustainable planning     Big Data     household transition     energy prediction    

A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality

Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY

《机械工程前沿(英文)》 2013年 第8卷 第2期   页码 181-186 doi: 10.1007/s11465-013-0257-7

摘要:

This paper demonstrates the application of a new multiaxial creep damage model developed by authors using stress traixiality to predict the failure time of a component made of 0.5%Cr-0.5%Mo-0.25%V low alloy steel. The model employs strain energy density and assumes that the uniaxial strain energy density of a component can be easily calculated and can be converted to multi-axial strain energy density by multiplying it to a function of stress trixiality which is a ratio of mean stress to equivalent stress. For comparison, an elastic-creep and elastic-plastic-creep finite element analysis (FEA) is performed to get multi-axial strain energy density of the component which is compared with the calculated strain energy density for both cases. The verification and application of the model are demonstrated by applying it to thin tube for which the experimental data are available. The predicted failure times by the model are compared with the experimental results. The results show that the proposed model is capable of predicting failure times of the component made of the above-mentioned material with an accuracy of 4.0%.

关键词: elastic-creep     elastic-plastic-creep     stress triaxiality     life prediction     pressure vessels     finite element analysis (FEA)    

Spatial prediction of soil contamination based on machine learning: a review

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1693-1

摘要:

● A review of machine learning (ML) for spatial prediction of soil contamination.

关键词: Soil contamination     Machine learning     Prediction     Spatial distribution    

Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis

《医学前沿(英文)》 2022年 第16卷 第3期   页码 496-506 doi: 10.1007/s11684-021-0828-7

摘要: The fracture risk of patients with diabetes is higher than those of patients without diabetes due to hyperglycemia, usage of diabetes drugs, changes in insulin levels, and excretion, and this risk begins as early as adolescence. Many factors including demographic data (such as age, height, weight, and gender), medical history (such as smoking, drinking, and menopause), and examination (such as bone mineral density, blood routine, and urine routine) may be related to bone metabolism in patients with diabetes. However, most of the existing methods are qualitative assessments and do not consider the interactions of the physiological factors of humans. In addition, the fracture risk of patients with diabetes and osteoporosis has not been further studied previously. In this paper, a hybrid model combining XGBoost with deep neural network is used to predict the fracture risk of patients with diabetes and osteoporosis, and investigate the effect of patients’ physiological factors on fracture risk. A total of 147 raw input features are considered in our model. The presented model is compared with several benchmarks based on various metrics to prove its effectiveness. Moreover, the top 18 influencing factors of fracture risks of patients with diabetes are determined.

关键词: XGBoost     deep neural network     healthcare     risk prediction    

采矿过程中磨料水射流性能通用预测方法

Eugene Averin

《工程(英文)》 2017年 第3卷 第6期   页码 888-891 doi: 10.1016/j.eng.2017.12.004

摘要:
极端采矿条件下的硬岩破碎可采用磨料水射流(AWJ)技术,这种技术能够在不产生粉尘的条件下有效切割难以机械加工的材料。这种技术还可用于爆破、本安和消防安全。就断裂力学而言,每一种可被破坏的材料均可被视为韧性或脆性材料。因此,需要找到一种无论使用AWJ 对何种材料进行切割都能精确预测其效率的方法。该问题可通过能量守恒法加以解决,它显示了材料去除量与AWJ 动能之间的比例。本文介绍了基于能量守恒法的预测方法,并提出如何达到最有效破坏水平的建议,以及关于涉及磨料流量与水流量、靶距和磨料颗粒粒径关系值的合理范围的建议。本文还提供了基于断裂力学的临时结构法确定材料破坏起始阈值条件的参数。

关键词: 磨料水射流     能量守恒法     切割深度     断裂力学     阈值速度     采矿    

Online machine learning for stream wastewater influent flow rate prediction under unprecedented emergencies

《环境科学与工程前沿(英文)》 2023年 第17卷 第12期 doi: 10.1007/s11783-023-1752-7

摘要:

● Online learning models accurately predict influent flow rate at wastewater plants.

关键词: Wastewater prediction     Data stream     Online learning     Batch learning     Influent flow rates    

Reliability prediction and its validation for nuclear power units in service

Jinyuan SHI,Yong WANG

《能源前沿(英文)》 2016年 第10卷 第4期   页码 479-488 doi: 10.1007/s11708-016-0425-7

摘要: In this paper a novel method for reliability prediction and validation of nuclear power units in service is proposed. The equivalent availability factor is used to measure the reliability, and the equivalent availability factor deducting planed outage hours from period hours and maintenance factor are used for the measurement of inherent reliability. By statistical analysis of historical reliability data, the statistical maintenance factor and the undetermined parameter in its numerical model can be determined. The numerical model based on the maintenance factor predicts the equivalent availability factor deducting planed outage hours from period hours, and the planed outage factor can be obtained by using the planned maintenance days. Using these factors, the equivalent availability factor of nuclear power units in the following 3 years can be obtained. Besides, the equivalent availability factor can be predicted by using the historical statistics of planed outage factor and the predicted equivalent availability factor deducting planed outage hours from period hours. The accuracy of the reliability prediction can be evaluated according to the comparison between the predicted and statistical equivalent availability factors. Furthermore, the reliability prediction method is validated using the nuclear power units in North American Electric Reliability Council (NERC) and China. It is found that the relative errors of the predicted equivalent availability factors for nuclear power units of NERC and China are in the range of –2.16% to 5.23% and –2.15% to 3.71%, respectively. The method proposed can effectively predict the reliability index in the following 3 years, thus providing effective reliability management and maintenance optimization methods for nuclear power units.

关键词: nuclear power units in service     reliability     reliability prediction     equivalent availability factors    

Position-varying surface roughness prediction method considering compensated acceleration in milling

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 855-867 doi: 10.1007/s11465-021-0649-z

摘要: Machined surface roughness will affect parts’ service performance. Thus, predicting it in the machining is important to avoid rejects. Surface roughness will be affected by system position dependent vibration even under constant parameter with certain toolpath processing in the finishing. Aiming at surface roughness prediction in the machining process, this paper proposes a position-varying surface roughness prediction method based on compensated acceleration by using regression analysis. To reduce the stochastic error of measuring the machined surface profile height, the surface area is repeatedly measured three times, and Pauta criterion is adopted to eliminate abnormal points. The actual vibration state at any processing position is obtained through the single-point monitoring acceleration compensation model. Seven acceleration features are extracted, and valley, which has the highest R-square proving the effectiveness of the filtering features, is selected as the input of the prediction model by mutual information coefficients. Finally, by comparing the measured and predicted surface roughness curves, they have the same trends, with the average error of 16.28% and the minimum error of 0.16%. Moreover, the prediction curve matches and agrees well with the actual surface state, which verifies the accuracy and reliability of the model.

关键词: surface roughness prediction     compensated acceleration     milling     thin-walled workpiece    

Trend prediction technology of condition maintenance for large water injection units

Xiaoli XU, Sanpeng DENG

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 171-175 doi: 10.1007/s11465-009-0091-0

摘要: Trend prediction technology is the key technology to achieve condition-based maintenance of mechanical equipment. Large-sized water injection units are key equipment in oilfields. The traditional preventive maintenance is not economical and cannot completely avoid vicious accidents. To ensure the normal operation of units and save maintenance costs, trend prediction technology is studied to achieve condition-based maintenance for water injection units. The main methods of the technology are given, the trend prediction method based on neural network is put forward, and the expert system based on the knowledge is developed. The industrial site verification shows that the proposed trend prediction technology can reflect the operating condition trend change of the water injection units and provide technical means to achieve condition-based predictive maintenance.

关键词: water injection units     condition-based maintenance     trend prediction    

Liquefaction prediction using support vector machine model based on cone penetration data

Pijush SAMUI

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 72-82 doi: 10.1007/s11709-013-0185-y

摘要: A support vector machine (SVM) model has been developed for the prediction of liquefaction susceptibility as a classification problem, which is an imperative task in earthquake engineering. This paper examines the potential of SVM model in prediction of liquefaction using actual field cone penetration test (CPT) data from the 1999 Chi-Chi, Taiwan earthquake. The SVM, a novel learning machine based on statistical theory, uses structural risk minimization (SRM) induction principle to minimize the error. Using cone resistance ( ) and cyclic stress ratio ( ), model has been developed for prediction of liquefaction using SVM. Further an attempt has been made to simplify the model, requiring only two parameters ( and maximum horizontal acceleration ), for prediction of liquefaction. Further, developed SVM model has been applied to different case histories available globally and the results obtained confirm the capability of SVM model. For Chi-Chi earthquake, the model predicts with accuracy of 100%, and in the case of global data, SVM model predicts with accuracy of 89%. The effect of capacity factor ( ) on number of support vector and model accuracy has also been investigated. The study shows that SVM can be used as a practical tool for prediction of liquefaction potential, based on field CPT data.

关键词: earthquake     cone penetration test     liquefaction     support vector machine (SVM)     prediction    

Machine learning-based solubility prediction and methodology evaluation of active pharmaceutical ingredients

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 523-535 doi: 10.1007/s11705-021-2083-5

摘要: Solubility has been widely regarded as a fundamental property of small molecule drugs and drug candidates, as it has a profound impact on the crystallization process. Solubility prediction, as an alternative to experiments which can reduce waste and improve crystallization process efficiency, has attracted increasing attention. However, there are still many urgent challenges thus far. Herein we used seven descriptors based on understanding dissolution behavior to establish two solubility prediction models by machine learning algorithms. The solubility data of 120 active pharmaceutical ingredients (APIs) in ethanol were considered in the prediction models, which were constructed by random decision forests and artificial neural network with optimized data structure and model accuracy. Furthermore, a comparison with traditional prediction methods including the modified solubility equation and the quantitative structure-property relationships model was carried out. The highest accuracy shown by the testing set proves that the ML models have the best solubility prediction ability. Multiple linear regression and stepwise regression were used to further investigate the critical factor in determining solubility value. The results revealed that the API properties and the solute-solvent interaction both provide a nonnegligible contribution to the solubility value.

关键词: solubility prediction     machine learning     artificial neural network     random decision forests    

Improved prediction of pile bending moment and deflection due to adjacent braced excavation

《结构与土木工程前沿(英文)》 2023年 第17卷 第11期   页码 1739-1759 doi: 10.1007/s11709-023-0961-2

摘要: Deep excavations in dense urban areas have caused damage to nearby existing structures in numerous past construction cases. Proper assessment is crucial in the initial design stages. This study develops equations to predict the existing pile bending moment and deflection produced by adjacent braced excavations. Influential parameters (i.e., the excavation geometry, diaphragm wall thickness, pile geometry, strength and small-strain stiffness of the soil, and soft clay thickness) were considered and employed in the developed equations. It is practically unfeasible to obtain measurement data; hence, artificial data for the bending moment and deflection of existing piles were produced from well-calibrated numerical analyses of hypothetical cases, using the three-dimensional finite element method. The developed equations were established through a multiple linear regression analysis of the artificial data, using the transformation technique. In addition, the three-dimensional nature of the excavation work was characterized by considering the excavation corner effect, using the plane strain ratio parameter. The estimation results of the developed equations can provide satisfactory pile bending moment and deflection data and are more accurate than those found in previous studies.

关键词: pile responses     excavation     prediction     deflection     bending moments    

标题 作者 时间 类型 操作

An energy consumption prediction approach of die casting machines driven by product parameters

期刊论文

Analysis and prediction of the influence of energy utilization on air quality in Beijing

LI Lin, HAO Jiming, HU Jingnan

期刊论文

Modeling, simulation, and prediction of global energy indices: a differential approach

Stephen Ndubuisi NNAMCHI, Onyinyechi Adanma NNAMCHI, Janice Desire BUSINGYE, Maxwell Azubuike IJOMAH, Philip Ikechi OBASI

期刊论文

Big Data to support sustainable urban energy planning: The EvoEnergy project

Moulay Larbi CHALAL, Benachir MEDJDOUB, Nacer BEZAI, Raid SHRAHILY

期刊论文

A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality

Tahir MAHMOOD, Sangarapillai KANAPATHIPILLAI, Mahiuddin CHOWDHURY

期刊论文

Spatial prediction of soil contamination based on machine learning: a review

期刊论文

Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis

期刊论文

采矿过程中磨料水射流性能通用预测方法

Eugene Averin

期刊论文

Online machine learning for stream wastewater influent flow rate prediction under unprecedented emergencies

期刊论文

Reliability prediction and its validation for nuclear power units in service

Jinyuan SHI,Yong WANG

期刊论文

Position-varying surface roughness prediction method considering compensated acceleration in milling

期刊论文

Trend prediction technology of condition maintenance for large water injection units

Xiaoli XU, Sanpeng DENG

期刊论文

Liquefaction prediction using support vector machine model based on cone penetration data

Pijush SAMUI

期刊论文

Machine learning-based solubility prediction and methodology evaluation of active pharmaceutical ingredients

期刊论文

Improved prediction of pile bending moment and deflection due to adjacent braced excavation

期刊论文