资源类型

期刊论文 1

年份

2016 1

关键词

检索范围:

排序: 展示方式:

Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring

Anan Wang,Helen H. Lou,Daniel Chen,Anfeng Yu,Wenyi Dang,Xianchang Li,Christopher Martin,Vijaya Damodara,Ajit Patki

《化学科学与工程前沿(英文)》 2016年 第10卷 第4期   页码 459-471 doi: 10.1007/s11705-016-1594-y

摘要: Industrial Flares are important safety devices to burn off the unwanted gas during process startup, shutdown, or upset. However, flaring, especially the associated smoke, is a symbol of emissions from refineries, oil gas fields, and chemical processing plants. How to simultaneously achieve high combustion efficiency (CE) and low soot emission is an important issue. Soot emissions are influenced by many factors. Flare operators tend to over-steam or over-air to suppress smoke, which results in low CE. How to achieve optimal flare performance remains a question to the industry and the regulatory agencies. In this paper, regulations in the US regarding flaring were reviewed. In order to determine the optimal operating window for the flare, different combustion mechanisms related to soot emissions were summarized. A new combustion mechanism (Vsoot) for predicting soot emissions was developed and validated against experimental data. Computational fluid dynamic (CFD) models combined with Vsoot combustion mechanism were developed to simulate the flaring events. It was observed that simulation results agree well with experimental data.

关键词: flare     soot emission     combustion mechanism     CFD simulation    

标题 作者 时间 类型 操作

Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring

Anan Wang,Helen H. Lou,Daniel Chen,Anfeng Yu,Wenyi Dang,Xianchang Li,Christopher Martin,Vijaya Damodara,Ajit Patki

期刊论文