资源类型

期刊论文 301

会议视频 25

会议信息 2

会议专题 1

年份

2024 1

2023 36

2022 39

2021 34

2020 39

2019 23

2018 13

2017 17

2016 7

2015 14

2014 7

2013 16

2012 5

2011 8

2010 6

2009 9

2008 5

2007 4

2006 2

2005 1

展开 ︾

关键词

含能材料 6

高分子材料 6

固体氧化物燃料电池 4

复合材料 4

机器学习 4

材料 4

材料设计 4

4D打印 3

产业化 3

碳中和 3

能源 3

关键材料 2

冶金 2

凝固技术 2

化工 2

医学 2

压水堆 2

发展战略 2

增材制造 2

展开 ︾

检索范围:

排序: 展示方式:

Hierarchically porous zeolites synthesized with carbon materials as templates

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1444-1461 doi: 10.1007/s11705-021-2090-6

摘要: Hierarchically porous zeolites are promising candidates in catalytic conversion of relatively bulky molecules, and their syntheses have attracted significant attention. From both industrial and scientific perspectives, different carbon materials have been widely employed as hard templates for the preparation of hierarchically porous zeolites during the past two decades. In this review, the progress in synthetic strategies using carbon materials as templates is comprehensively summarized. Depending on the affinity between the carbon templates and zeolite precursors, the substantial strategies for synthesizing hierarchical zeolites are introduced in direct templates and indirect templates. Direct templates methods, by which the carbon materials are directly mixed with precursors gel as hard templates, are first reviewed. Then, we discuss the indirect templates method (crystallization of carbon-silica composites), by which the carbon is produced by in situ pyrolysis of organic-inorganic precursors. In addition, the technique of encapsulating metal species into zeolites crystals with the assistance of carbon templates is also discussed. In the conclusion part, the factors affecting the synthesis of carbon-templated hierarchically porous zeolites are remarked. This review is expected to attract interest in the synthesis strategies of hierarchically porous zeolites, especially cost-effective and large-scale production methodologies, which are essential to the industrial application of hierarchical zeolites.

关键词: hierarchical zeolites     carbon materials     direct templates     indirect templates     carbon-silica composites    

Influence of envelope insulation materials on building energy consumption

Junlan YANG, Jiabao TANG

《能源前沿(英文)》 2017年 第11卷 第4期   页码 575-581 doi: 10.1007/s11708-017-0473-7

摘要: In this paper, the influence of different external wall insulation materials on the energy consumption of a newly built apartment in Germany is investigated. Three types of insulation materials commonly used in Germany including mineral fiber, polyurethane, and vacuum insulation panel are chosen for the case studies. An energy analysis model is established to clarify the primary energy use for production of the insulation materials and for building space heating. The calculation results show that the energy consumption for insulation material production increases with the insulation thickness, whereas the energy use for space heating decreases with the insulation thickness. Thus, there exists an optimum thickness to get the lowest total energy consumption for each kind of insulation material. The ascending order of the total energy consumption of the three materials is mineral fiber, polyurethane, and vacuum insulation panel. However, the optimum insulation thicknesses for the three insulation materials show a verse order at a certain heat transfer coefficient of the base envelope. The energy payback time (EPT) is proposed to calculate the payback time of the primary energy use for insulation material production. Mineral fiber has the shortest time, followed by polyurethane and vacuum insulation panel. The EPTS is 10, 19 and 21 years, respectively when the heat transfer coefficient of the base envelope is 0.2 W/(m ·K). In addition, the simulated results show that the theoretical value and the simulated value are basically identical.

关键词: building envelope     insulation materials     energy consumption     payback time    

Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects

Lingchen Kong, Xitong Liu

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1269-2

摘要: Abstract • Mechanisms for selective recovery of materials in electrochemical processes are discussed. • Wastewaters that contain recoverable materials are reviewed. • Application prospects are discussed from both technical and non-technical aspects. Recovering valuable materials from waste streams is critical to the transition to a circular economy with reduced environmental damages caused by resource extraction activities. Municipal and industrial wastewaters contain a variety of materials, such as nutrients (nitrogen and phosphorus), lithium, and rare earth elements, which can be recovered as value-added products. Owing to their modularity, convenient operation and control, and the non-requirement of chemical dosage, electrochemical technologies offer a great promise for resource recovery in small-scale, decentralized systems. Here, we review three emerging electrochemical technologies for materials recovery applications: electrosorption based on carbonaceous and intercalation electrodes, electrochemical redox processes, and electrochemically induced precipitation. We highlight the mechanisms for achieving selective materials recovery in these processes. We also present an overview of the advantages and limitations of these technologies, as well as the key challenges that need to be overcome for their deployment in real-world systems to achieve cost-effective and sustainable materials recovery.

关键词: Materials recovery     Electrosorption     Capacitive deionization     Redox processes     Electrochemical precipitation    

Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems

《能源前沿(英文)》 2023年 第17卷 第3期   页码 320-323 doi: 10.1007/s11708-023-0889-1

摘要: Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems

关键词: materials systems    

Advanced materials: adsorbent and catalyst for environmental application

Junhua LI, Shubo DENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 301-301 doi: 10.1007/s11783-013-0529-9

Recycling Materials from Waste Electrical and Electronic Equipment

Jinhui Li

《环境科学与工程前沿(英文)》 2017年 第11卷 第5期 doi: 10.1007/s11783-017-1001-z

Preface to special issue on “Advanced Materials and Catalysis”

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1357-1359 doi: 10.1007/s11705-021-2119-x

Effect of graphene and its derivatives on thermo-mechanical properties of phase change materials and

《能源前沿(英文)》 2022年 第16卷 第2期   页码 150-186 doi: 10.1007/s11708-021-0795-3

摘要: Phase change materials (PCMs) play a leading role in overcoming the growing need of advanced thermal management for the storage and release of thermal energy which is to be used for different solar applications. However, the effectiveness of PCMs is greatly affected by their poor thermal conductivity. Therefore, in the present review the progress made in deploying the graphene (Gr) in PCMs in the last decade for providing the solution to the aforementioned inadequacy is presented and discussed in detail. Gr and its derivatives ((Gr oxide (GO), Gr aerogel (GA) and Gr nanoplatelets (GNPs)) based PCMs can improve the thermal conductivity and shape stability, which may be attributed to the extra ordinary thermo-physical properties of Gr. Moreover, it is expected from this review that the advantages and disadvantages of using Gr nanoparticles provide a deep insight and help the researchers in finding out the exact basic properties and finally the applications of Gr can be enhanced.

关键词: phase change materials (PCMs)     graphene     thermal conductivity     characterization    

Research on applications of piezoelectric materials in smart structures

Jinhao QIU, Hongli JI

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 99-117 doi: 10.1007/s11465-011-0212-4

摘要:

Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, some research activities on the applications of piezoelectric materials in smart structures, including semi-active vibration control based on synchronized switch damping using negative capacitance, energy harvesting using new electronic interfaces, structural health monitoring based on a new type of piezoelectric fibers with metal core, and active hysteresis control based on new modified Prandtl-Ishlinskii model at the Aeronautical Science Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics are introduced.

关键词: piezoelectric materials     vibration control     energy harvesting     structural health monitoring     piezoelectric hysteresis    

Microbial self-healing of cracks in cement-based materials and its influencing factors

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0986-6

摘要: Cement-based materials are brittle and crack easily under natural conditions. Cracks can reduce service life because the transport of harmful substances can cause corrosion damage to the structures. This review discusses the feasibility of using microbial self-healing agents for crack healing. Tubular and spherical carriers can be used to load microbial self-healing agents and protect microbes, which prolongs the self-healing time. The area self-healing ratio, permeability, mechanical strength, precipitation depth method, numerical modeling, and ultrasonic method can be employed to identify the self-healing effect of cracks. Moreover, the self-healing mechanism is systematically analyzed. The results showed that microbial self-healing agents can repair cracks in cement-based materials in underground projects and dam gates. The difficulties and future development of self-healing cracks were analyzed. A microbial self-healing agent was embedded in the cement-based material, which automatically repaired the developing cracks. With the development of intelligent building materials, self-healing cracks have become the focus of attention.

关键词: cement-based materials     cracks     microbial self-healing agent     mechanism     intelligent building materials    

Nanocomposite materials in orthopedic applications

Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 1-13 doi: 10.1007/s11705-018-1764-1

摘要:

This chapter is an introduction to nanocomposite materials and its classifications with emphasis on orthopedic application. It covers different types of matrix nanocomposites including ceramics, metal, polymer and natural-based nanocomposites with the main features and applications in the orthopedic. In addition, it presents structure, composition, and biomechanical features of bone as a natural nanocomposite. Finally, it deliberately presents developing methods for nanocomposites bone grafting.

关键词: nanocomposite materials     orthopedic applications     bone grafting nanocomposites     nanocomposites classification    

Sustainable functionalization and modification of materials via multicomponent reactions in water

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1318-1344 doi: 10.1007/s11705-022-2150-6

摘要: In materials chemistry, green chemistry has established firm ground providing essential design criteria to develop advanced tools for efficient functionalization and modification of materials. Particularly, the combination of multicomponent reactions in water and aqueous media with materials chemistry unlocks a new sustainable way for constructing multi-functionalized structures with unique features, playing significant roles in the plethora of applications. Multicomponent reactions have received significant consideration from the community of material chemistry because of their great efficiency, simple operations, intrinsic molecular diversity, and an atom and a pot economy. Also, by rational design of multicomponent reactions in water and aqueous media, the performance of some multicomponent reactions could be enhanced by the contributing “natural” form of water-soluble materials, the exclusive solvating features of water, and simple separating and recovering materials. To date, there is no exclusive review to report the sustainable functionalization and modification of materials in water. This critical review highlights the utility of various kinds of multicomponent reactions in water and aqueous media as green methods for functionalization and modification of siliceous, magnetic, and carbonaceous materials, oligosaccharides, polysaccharides, peptides, proteins, and synthetic polymers. The detailed discussion of synthetic procedures, properties, and related applicability of each functionalized/modified material is fully deliberated in this review.

关键词: materials     multicomponent reactions     modification     functionalization     water    

高熵合金材料研究进展与展望

李天昕,王书道,卢一平,曹志强 ,王同敏,李廷举

《中国工程科学》 2023年 第25卷 第3期   页码 170-181 doi: 10.15302/J-SSCAE-2023.03.016

摘要:

随着世界科技水平的快速发展以及国民经济建设对高性能合金材料的迫切需求,传统单一主元合金逐渐不能满足人们与日俱增的使役需求。高熵合金因其独特的物理、化学以及力学性能,极大地拓展了金属材料成分设计范围,有望在国防、航空、航天、海洋、核能、医疗、新能源等重大工程领域发挥重要作用。本文结合各领域对先进高熵合金材料的具体需求,梳理了高熵合金材料的特征和内涵,分析了高熵合金材料发展的整体形势与前景,厘清了国内外高熵合金的发展现状。在此基础上,指出了我国高熵合金领域存在的差距和不足,我国高熵合金部分基础原材料依赖进口,严重威胁产业链安全;高熵合金产学研用体系尚未健全,工业化应用方面的研发投入有待提高。针对上述问题,研究建议,加强高熵合金材料研发的顶层设计,完善产业政策;加强企业和科研机构的对接和沟通;完善高熵合金材料标准、测试、表征、评价体系;推进人才队伍建设;降低材料成本,打造高附加值产品,促进我国先进高熵合金材料产业朝着体系化、绿色化、高端化、智能化方向发展。

关键词: 高熵合金;新材料;有色金属;关键战略材料;结构材料;功能材料    

Preface to special issue on “Engineering Nanostructured Materials for Advanced Energy and Environmental

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1621-1622 doi: 10.1007/s11705-023-2365-1

摘要: Preface to special issue on “Engineering Nanostructured Materials for Advanced Energy and Environmental Catalysis”

Latest advances in ionic liquids promoted synthesis and application of advanced biomass materials

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 798-816 doi: 10.1007/s11705-023-2316-x

摘要: The utilization of sustainable resources provides a path to relieving the problem of dependence on fossil resources. In this context, biomass materials have become a feasible substitute for petroleum-based materials. The development of biomass materials is booming and advanced biomass materials with various functional properties are used in many fields including medicine, electrochemistry, and environmental science. In recent years, ionic liquids have been widely used in biomass pretreatments and processing owing to their “green” characteristics and adjustable physicochemical properties. Thus, the effects of ionic liquids in biomass materials generation require further study. This review summarizes the multiple roles of ionic liquids in promoting the synthesis and application of advanced biomass materials as solvents, structural components, and modifiers. Finally, a prospective approach is proposed for producing additional higher-quality possibilities between ionic liquids and advanced biomass materials.

关键词: biomass materials     functional materials     ionic liquids     synthesis     structure-property relationship    

标题 作者 时间 类型 操作

Hierarchically porous zeolites synthesized with carbon materials as templates

期刊论文

Influence of envelope insulation materials on building energy consumption

Junlan YANG, Jiabao TANG

期刊论文

Emerging electrochemical processes for materials recovery from wastewater: Mechanisms and prospects

Lingchen Kong, Xitong Liu

期刊论文

Promoting hydrogen industry with high-capacity Mg-based solid-state hydrogen storage materials and systems

期刊论文

Advanced materials: adsorbent and catalyst for environmental application

Junhua LI, Shubo DENG

期刊论文

Recycling Materials from Waste Electrical and Electronic Equipment

Jinhui Li

期刊论文

Preface to special issue on “Advanced Materials and Catalysis”

期刊论文

Effect of graphene and its derivatives on thermo-mechanical properties of phase change materials and

期刊论文

Research on applications of piezoelectric materials in smart structures

Jinhao QIU, Hongli JI

期刊论文

Microbial self-healing of cracks in cement-based materials and its influencing factors

期刊论文

Nanocomposite materials in orthopedic applications

Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar

期刊论文

Sustainable functionalization and modification of materials via multicomponent reactions in water

期刊论文

高熵合金材料研究进展与展望

李天昕,王书道,卢一平,曹志强 ,王同敏,李廷举

期刊论文

Preface to special issue on “Engineering Nanostructured Materials for Advanced Energy and Environmental

期刊论文

Latest advances in ionic liquids promoted synthesis and application of advanced biomass materials

期刊论文