资源类型

期刊论文 103

会议视频 1

年份

2023 12

2022 16

2021 10

2020 12

2019 11

2018 4

2017 5

2016 8

2015 10

2014 6

2013 2

2012 2

2011 2

2010 2

2009 1

展开 ︾

关键词

纳米粒子 2

纳米颗粒 2

5型腺病毒 1

Pickering乳液 1

二维纳米颗粒 1

光催化 1

内球配位 1

再生 1

分子成像 1

吸附 1

提高石油采收率 1

水过滤 1

疫苗 1

碳封存 1

纳米尺寸效应 1

纳米海绵 1

纳米限域 1

细菌毒素 1

绿色化工 1

展开 ︾

检索范围:

排序: 展示方式:

Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1432-4

摘要:

• Aquatic plants are more likely to absorb TiO2 NPs that are beneficial to them.

关键词: Constructed wetlands     Aquatic plants     Nanoparticles     Physiological activity     Biomass    

Enhanced 4-chlorophenol biodegradation by integrating FeO nanoparticles into an anaerobic reactor: Long-term

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1519-6

摘要:

• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system.

关键词: Dechlorination     Fe2O3 nanoparticles     Electron transfer     Microbial community    

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1572-1582 doi: 10.1007/s11705-021-2112-4

摘要: High density and uniform distribution of the gold nanoparticles functionalized single-stranded DNA modified reduced graphene oxide nanocomposites were obtained by non-covalent interaction. The positive gold nanoparticles prepared by phase inversion method exhibited good dimensional homogeneity and dispersibility, which could readily combine with single-stranded DNA modified reduced graphene oxide nanocomposites by electrostatic interactions. The modification of single-stranded DNA endowed the reduced graphene oxide with favorable biocompatibility and provided the preferable surface with negative charge for further assembling of gold nanoparticles to obtain gold nanoparticles/single-stranded DNA modified reduced graphene oxide nanocomposites with better conductivity, larger specific surface area, biocompatibility and electrocatalytic characteristics. The as-prepared nanocomposites were applied as substrates for the construction of cholesterol oxidase modified electrode and well realized the direct electron transfer between the enzyme and electrode. The modified gold nanoparticles could further catalyze the products of cholesterol oxidation catalyzed by cholesterol oxidase, which was beneficial to the enzyme-catalyzed reaction. The as-fabricated bioelectrode exhibited excellent electrocatalytic performance for the cholesterol with a linear range of 7.5‒280.5 μmol·L‒1, a low detection limit of 2.1 μmol·L‒1, good stability and reproducibility. Moreover, the electrochemical biosensor showed good selectivity and acceptable accuracy for the detection of cholesterol in human serum samples.

关键词: reduced graphene oxide     gold nanoparticles     electrochemical biosensor     cholesterol oxidase     cholesterol    

polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1450-2

摘要:

• The NPs aggregation in the electrolyte solution is consistent with the DLVO theory.

关键词: Silver nanoparticles     Silver sulfide nanoparticles     Extracellular polymeric substances     Aggregation kinetics     Influence mechanisms    

Size and shape effects of MnFeO nanoparticles as catalysts for reductive degradation of dye pollutants

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 108-171 doi: 10.1007/s11783-021-1396-4

摘要: The magnetic nanoparticles that are easy to recycle have tremendous potential as a suitable catalyst for environmental toxic dye pollutant degradation. Rationally engineering shapes and tailoring the size of nanocatalysts are regarded as an effective manner for enhancing performances. Herein, we successfully synthesized three kinds of MnFe2O4 NPs with distinctive sizes and shapes as catalysts for reductive degradation of methylene blue, rhodamine 6G, rhodamine B, and methylene orange. It was found that the catalytic activities were dependent on the size and shape of the MnFe2O4 NPs and highly related to the surface-to-volume ratio and atom arrangements. Besides, all these nanocatalysts exhibit selectivity to different organic dyes, which is beneficial for their practical application in dye pollutant treatment. Furthermore, the MnFe2O4 NPs could be readily recovered by a magnet and reused more than ten times without appreciable loss of activity. The size and shape effects of MnFe2O4 nanoparticles demonstrated in this work not only accelerate further understanding the nature of nanocatalysts but also contribute to the precise design of nanoparticles catalyst for pollutant degradation.

关键词: Dye degradation     MnFe2O4 nanoparticles     Size and shape-control    

Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification

Chunming Wang, Huirong Lin, Chengsong Ye

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0874-6

摘要: The functional surface-modified MNPs were capable of capture with high efficiency. After induced to VBNC state by chlorination, cells could be separated by MNPs with an additional incubation process. This study provides a facile and economic method for VBNC cell enrichment and purification. GRAPHIC ABSTRACT Viable But Nonculturable (VBNC) Bacteria, which represent a unique population of microorganisms in drinking water systems, have become a potential threat to human health. Current studies on VBNC cells usually fail to obtain pure VBNC state bacteria, which may lead to inaccurate results. We therefore introduce a novel method of VBNC cell separation and purification in this paper. PAH-coated magnetic nanoparticles (MNPs) were synthesized and found to be capable of capturing and releasing bacterial cells with high efficiency. With the aid of an additional incubation step, VBNC cells were easily isolated and purified from normal bacteria using functional MNPs. Our method represents a new technique that can be utilized in studies of VBNCs.

关键词: Drinking water biosafety     VBNC     Nanoparticles     Magnetic separation and purification    

Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine

Wenchao Zhang,Lin Zhang,Yan Sun

《化学科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 494-500 doi: 10.1007/s11705-015-1527-1

摘要: A green and size-controlled synthesis of silver nanoparticles (Ag NPs) in aqueous solution with the assistance of L-cysteine is presented. The size of Ag NPs decreases with the increase of L-cysteine concentration, and thus can be controlled by adjusting L-cysteine concentration. TEM analysis shows that Ag NPs with an average size of 3 nm can be produced in the presence of 1.0 mmol/L L-cysteine, about one sixth of the size of Ag NPs obtained in the absence of L-cysteine (17 nm). The as-synthesized silver colloidal solution is stable and can be stored at room temperature for at least two months without any precipitation. This L-cysteine assisted method is simple, feasible and efficient, and would facilitate the production and application of Ag NPs.

关键词: nanoparticles     silver     L-cysteine     size distribution     synthesis    

Catalytic decomposition of low level ozone with gold nanoparticles supported on activated carbon

Pengyi ZHANG , Bo ZHANG , Rui SHI ,

《环境科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 281-288 doi: 10.1007/s11783-009-0032-5

摘要: Highly dispersed gold nanoparticles were supported on coal-based activated carbon (AC) by a sol immobilization method and were used to investigate their catalytic activity for low-level ozone decomposition at ambient temperature. Nitrogen adsorption-desorption, scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts before and after ozone decomposition. The results showed that the supported gold nanoparticles prepared with microwave heating were much smaller and more uniformly dispersed on the activated carbon than those prepared with traditional conduction heating, exhibiting higher catalytic activity for ozone decomposition. The pH values of gold precursor solution significantly influenced the catalytic activity of supported gold for ozone decomposition, and the best pH value was 8. In the case of space velocity of 120000h, inlet ozone concentration of 50mg/m, and relative humidity of 45%, the Au/AC catalyst maintained the ozone removal ratio at 90.7% after 2500min. After being used for ozone decomposition, the surface carbon of the catalyst was partly oxidized and the oxygen content increased accordingly, while its specific surface area and pore volume only decreased a little. Ozone was mainly catalytically decomposed by the gold nanoparticles supported on the activated carbon.

关键词: ozone decomposition     activated carbon     gold nanoparticles     catalysis     sodium citrate     microwave    

Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms

Zhaoyi SHEN,Zhuo CHEN,Zhen HOU,Tingting LI,Xiaoxia LU

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 912-918 doi: 10.1007/s11783-015-0789-7

摘要: The widespread production and use of zinc oxide nanoparticles (ZnO-NPs) in recent years have posed potential threat to the ecosystem. This study aimed to investigate the ecotoxicological effect of ZnO-NPs on soil microorganisms using laboratory microcosm test. Respiration, ammonification, dehydrogenase (DH) activity, and fluorescent diacetate hydrolase (FDAH) activity were used as ecotoxicological parameters. The results showed that in the neutral soil treated with 1 mg ZnO-NPs per g soil (fresh, neutral), ammonification was significantly inhibited during the study period of three months, but the inhibition rate decreased over increasing time. Inhibition in respiration was observed in the first month of the test. In various ZnO-NPs treatments (1 mg, 5 mg, and 10 mg ZnO-NPs per g soil), DH activity and FDAH activity were inhibited during the study period of one month. For both enzyme activities, there were positive dose–response relationships between the concentration of ZnO-NPs and the inhibition rates, but the curves changed over time due to changes of ZnO-NPs toxicity. Soil type affected the toxicity of ZnO-NPs in soil. The toxicity was highest in the acid soil, followed by the neutral soil. The toxicity was relatively low in the alkaline soil. The toxicity was not accounted for by the Zn released from the ZnO-NPs. Direct interaction of ZnO-NPs with biologic targets might be one of the reasons. The adverse effect of ZnO-NPs on soil microorganisms in neutral and acid soils is worthy of attention.

关键词: zinc oxide nanoparticles (ZnO-NPs)     soil microorganisms     respiration     ammonification     dehydrogenase (DH) activity     fluorescent diacetate hydrolase (FDAH) activity    

VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications

Mani Abirami, Krishnan Kannabiran

《化学科学与工程前沿(英文)》 2016年 第10卷 第4期   页码 542-551 doi: 10.1007/s11705-016-1599-6

摘要: We present the microbial green synthesis of silver nanoparticles (NPs) by VITHM1 strain (MTCC No. 12465). The secondary metabolites in the cell free supernatant of this bacterium when incubated with 1 mmol/L AgNO , mediated the biological synthesis of AgNPs. The synthesized AgNPs were characterized by UV-visible spectrum, X-ray diffraction (XRD), atomic force microscope, scanning electron microscopy equipped with energy dispersive spectroscopy, transmission electron microscopy, FT-IR spectroscopy, dynamic light scattering and zeta potential. They were highly stable and, spherical in shape with the average size of 30?50 nm. The secondary metabolites involved in the formation of AgNPs were identified gas chromatography-mass spectrography. The 3D structure of the unit cell of the synthesized AgNPs was determined using XRD data base. The synthesized AgNPs exhibited significant antibacterial activity against tested bacterial pathogens, and did not show haemolysis on human red blood cells. This green synthesis could provide a new platform to explore and use AgNPs as antibacterial therapeutic agents.

关键词: Streptomyces ghanaensis VITHM1     nanoparticles     3D structure     antibacterial activity    

Best operating conditions to produce hydroxyapatite nanoparticles by means of a spinning disc reactor

A. F. D’ Intino,B. de Caprariis,M.L. Santarelli,N. Verdone,A. Chianese

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 156-160 doi: 10.1007/s11705-014-1427-9

摘要: In this work, Mg doped hydroxyapatite (Mg-HAP) nanoparticles were produced by a reaction-precipitation process by using a spinning disc reactor (SDR) at high rotational speed. The production process of these nanoparticles consisted of the neutralization reaction between two aqueous solutions of calcium chloride and ammonia orthophosphate at room temperature. By operating at pH= 10, a high purity Mg-HAP nanoparticles were obtained. In particular, they were 51 nm in average size when the two reagents were fed over the disc symmetrically at 3 cm from the disc center and a rotational speed of the disc reactor equal to 1400 r/min was adopted.

关键词: hydroxyapatite     nanoparticles     spinning disc reactor    

Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography

Carsten-Rene Arlt, Dominik Brekel, Stefan Neumann, David Rafaja, Matthias Franzreb

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1346-1355 doi: 10.1007/s11705-021-2040-3

摘要: The size fractionation of magnetic nanoparticles is a technical problem, which until today can only be solved with great effort. Nevertheless, there is an important demand for nanoparticles with sharp size distributions, for example for medical technology or sensor technology. Using magnetic chromatography, we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties. This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization. Since the strength of this interaction is related to particle size, the principle is suitable for size fractionation. This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography. Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm, the process showed a separation sharpness of up to 0.52 with recovery rates of 100%. The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min). Due to the easy scalability of continuous chromatography, the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.

关键词: magnetic chromatography     simulated moving bed chromatography     magnetic nanoparticles     size fractionation    

Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation

Tao Zhang, Tewodros Asefa

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 329-338 doi: 10.1007/s11705-018-1741-8

摘要:

Copper nanoparticles-decorated polyaniline-derived mesoporous carbon that can serve as noble metal-free electrocatalyst for the hydrazine oxidation reaction (HzOR) is synthesized via a facile synthetic route. The material exhibits excellent electrocatalytic activity toward HzOR with low overpotential and high current density. The material also remains stable during the electrocatalytic reaction for long time. Its good electrocatalytic performance makes this material a promising alternative to conventional noble metal-based catalysts (e.g., Pt) that are commonly used in HzOR-based fuel cells.

关键词: copper nanoparticles     mesoporous carbon     noble metal-free electrocatalyst     hydrazine oxidation reaction     polyaniline    

(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis

Wenlu Li, John D. Fortner

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1256-7

摘要: • The fabrication of monodisperse, (super)paramagnetic nanoparticles is summarized. • Monolayer and bilayer surface coating structures are described. • Mono/bilayer coated nanoparticles showed high sorption capacities for U, As, and Cr. Over the past few decades, engineered, (super)paramagnetic nanoparticles have drawn extensive research attention for a broad range of applications based on their tunable size and shape, surface chemistries, and magnetic properties. This review summaries our recent work on the synthesis, surface modification, and environmental application of (super)paramagnetic nanoparticles. By utilizing high-temperature thermo-decomposition methods, first, we have broadly demonstrated the synthesis of highly monodispersed, (super)paramagnetic nanoparticles, via the pyrolysis of metal carboxylate salts in an organic phase. Highly uniform magnetic nanoparticles with various size, composition, and shape can be precisely tuned by controlled reaction parameters, such as the initial precursors, heating rate, final reaction temperature, reaction time, and the additives. These materials can be further rendered water stable via functionalization with surface mono/bi-layer coating structure using a series of tunable ionic/non-ionic surfactants. Finally, we have demonstrated platform potential of these materials for heavy metal ions sensing, sorption, and separation from the aqueous phase.

关键词: Superparamagnetic nanoparticles     Surface functionalization     Environmental sensing     Heavy metal ion sorption    

Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic

Man ZHANG,Feng HE,Dongye ZHAO

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 888-896 doi: 10.1007/s11783-015-0774-1

摘要: In this study, stabilized Pd, Pt and Au nanoparticles were successfully prepared in aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping agent. These metal nanoparticles were then tested for catalytic hydrodechlorination toward two classes of organochlorinated compounds (vinyl polychlorides including trichloroethylene (TCE), tetrachloroethylene (PCE), and alkyl polychlorides including 1,1,1-trichloroethane (1,1,1-TCA), and 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA)) to determine the rate-limiting steps and to explore the reaction mechanisms. The surface area normalized reaction rate constant, , showed a systematic dependence on the electronic structure (the density of states at the Fermi level) of the metals, suggesting that adsorption of organochlorinated reactants on the metal catalyst surfaces is the rate-limiting step for catalytic hydrodechlorination. Hydrodechlorination rates of 1,1,1-TCA and 1,1,1,2-TeCA agreed with the bond strength of the first (weakest) dissociated C-Cl bond, suggesting that C-Cl bond cleavage, which is the first step for dissociative adsorption of the alkyl polychlorides, controlled the catalytic hydrodechlorination rate. However, hydrodechlorination rates of TCE and PCE correlated with the adsorption energies of their molecular (non-dissociative) adsorption on the noble metals rather than with the first C-Cl bond strength, suggesting that molecular adsorption governs the reaction rate for hydrodechlorination of the vinyl polychlorides.

关键词: catalytic hydrodechlorination     electronic structure     metal nanoparticles     reaction mechanisms    

标题 作者 时间 类型 操作

Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system

期刊论文

Enhanced 4-chlorophenol biodegradation by integrating FeO nanoparticles into an anaerobic reactor: Long-term

期刊论文

Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor

期刊论文

polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles

期刊论文

Size and shape effects of MnFeO nanoparticles as catalysts for reductive degradation of dye pollutants

期刊论文

Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification

Chunming Wang, Huirong Lin, Chengsong Ye

期刊论文

Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine

Wenchao Zhang,Lin Zhang,Yan Sun

期刊论文

Catalytic decomposition of low level ozone with gold nanoparticles supported on activated carbon

Pengyi ZHANG , Bo ZHANG , Rui SHI ,

期刊论文

Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms

Zhaoyi SHEN,Zhuo CHEN,Zhen HOU,Tingting LI,Xiaoxia LU

期刊论文

VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications

Mani Abirami, Krishnan Kannabiran

期刊论文

Best operating conditions to produce hydroxyapatite nanoparticles by means of a spinning disc reactor

A. F. D’ Intino,B. de Caprariis,M.L. Santarelli,N. Verdone,A. Chianese

期刊论文

Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography

Carsten-Rene Arlt, Dominik Brekel, Stefan Neumann, David Rafaja, Matthias Franzreb

期刊论文

Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation

Tao Zhang, Tewodros Asefa

期刊论文

(Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis

Wenlu Li, John D. Fortner

期刊论文

Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic

Man ZHANG,Feng HE,Dongye ZHAO

期刊论文