资源类型

期刊论文 188

会议视频 2

年份

2023 9

2022 22

2021 23

2020 12

2019 15

2018 5

2017 8

2016 4

2015 6

2014 17

2013 7

2012 4

2011 6

2010 11

2009 4

2008 11

2007 13

2006 4

2005 5

2003 1

展开 ︾

关键词

强度 3

本构关系 2

析出强化 2

混凝土 2

疲劳 2

表面完整性 2

高强度 2

1860 MPa等级 1

4250 m 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

ANSYS 1

DQ&P 1

F-B双相钢 1

M23C6 碳化物 1

PCB缺陷检测 1

Pareto 优于关系 1

Pareto 强度值 1

展开 ︾

检索范围:

排序: 展示方式:

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 288-293 doi: 10.1007/s11709-018-0480-8

摘要: The most common experimental methods of measuring material strength are the uniaxial compressive and tensile tests. Generally, shearing fracture model occurs in both the tests. Compressive strength is higher than tensile strength for a material. Shearing fracture angle is smaller than 45° under uniaxial compression and greater than 45° under uniaxial tension. In this work, a unified relation of material strength under uniaxial compression and tension is developed by correlating the shearing fracture angle in theory. This constitutive relation is quantitatively illustrated by a function for analyzing the material strength from shear fracture angle. A computational simulation is conducted to validate this theoretical function. It is full of interest to give a scientific illustration for designing the high-strength materials and engineering structures.

关键词: strength     fracture     mechanics    

The effects of interfacial strength on fractured microcapsule

Luthfi Muhammad MAULUDIN, Chahmi OUCIF

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 353-363 doi: 10.1007/s11709-018-0469-3

摘要: The effects of interfacial strength on fractured microcapsule are investigated numerically. The interaction between crack and microcapsule embedded in mortar matrix is modeled based on cohesive approach. The microcapsules are modelled with variation of core-shell thickness ratio and potential cracks are represented by pre-inserted cohesive elements along the element boundaries of the mortar matrix, microcapsules core, microcapsule shell, and at the interfaces between these phases. Special attention is given to the effects of cohesive fracture on the microcapsule interface, namely fracture strength, on the load carrying capacity and fracture probability of the microcapsule. The effect of fracture properties on microcapsule is found to be significant factor on the load carrying capacity and crack propagation characteristics. Regardless of core-shell thickness ratio of microcapsule, the load carrying capacity of self-healing material under tension increases as interfacial strength of microcapsule shell increases. In addition, given the fixed fracture strength of the interface of microcapsule shell, the higher the ratio core-shell thickness, the higher the probability of microcapsules being fractured.

关键词: interfacial strength     cohesive elements     microcapsule     core-shell thickness ratio     fracture properties    

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1595-7

摘要:

● Mechanical behavior of MBT waste affected by loading rate was investigated.

关键词: Mechanically and biologically treated waste     Landfill     Triaxial test     Loading rate     Axial strain     Shear strength parameter    

The strength–dilatancy characteristics embraced in hypoplasticity

Zhongzhi FU, Sihong LIU, Zijian WANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 178-187 doi: 10.1007/s11709-013-0191-0

摘要: The strength-dilatancy characteristics of frictional materials embraced in the hypoplastic model proposed by Gudehus and Bauer are investigated and compared with the revised model suggested by Huang. In the latter the deviatoric stress in the model by Gudehus and Bauer is replaced by a transformed stress according to the stress transformation technique proposed by Matsuoka. The flow rule, the failure state surface equation and the strength-dilatancy relationship embraced in both models are derived analytically. The performance of the two hypoplastic models in reproducing the relationship between the peak strength and the corresponding dilation rate under triaxial compression, plane compression and plane shearing are then extensively investigated and compared with experimental results and with the predictions made by particular classical stress-dilatancy theories. Numerical investigations show that the performance in reproducing the strength-dilatancy relationship is quite satisfactory under triaxial compression stress state in both models and the predictions made by the transformed stress based model are closer to the results obtained from classical stress-dilatancy theories for plane compression and plane shearing problems.

关键词: strength     dilatancy     hypoplasticity     frictional materials    

Slender reinforced concrete shear walls with high-strength concrete boundary elements

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 138-151 doi: 10.1007/s11709-022-0897-y

摘要: Reinforced concrete structural walls are commonly used for resisting lateral forces in buildings. Owing to the advancements in the field of concrete materials over the past few decades, concrete mixes of high compressive strength, commonly referred to as high-strength concrete (HSC), have been developed. In this study, the effects of strategic placement of HSC on the performance of slender walls were examined. The finite-element model of a conventional normal-strength concrete (NSC) prototype wall was validated using test data available in extant studies. HSC was incorporated in the boundary elements of the wall to compare its performance with that of the conventional wall at different axial loads. Potential reductions in the reinforcement area and size of the boundary elements were investigated. The HSC wall exhibited improved strength and stiffness, and thereby, allowed reduction in the longitudinal reinforcement area and size of the boundary elements for the same strength of the conventional wall. Cold joints resulting from dissimilar concrete pours in the web and boundary elements of the HSC wall were modeled and their impact on behavior of the wall was examined.

关键词: slender walls     high-strength concrete     rectangular and barbell-shaped walls     cold joints    

Effect of environment change on the strength of cement/lime treated clays

Takenori HINO, Rui JIA, Seiji SUEYOSHI, Tri HARIANTO

《结构与土木工程前沿(英文)》 2012年 第6卷 第2期   页码 153-165 doi: 10.1007/s11709-012-0153-y

摘要: The field strengths of cement/lime treated clays were investigated in the Ariake Sea costal lowlands. The deposition environment of the investigation location is reconstructed and compared to the present ground environment. The mechanism of the ground environment change and its effect on the strength of cement/lime treated soil are discussed. The strength development of improved soil using cement and lime in different curing environments was investigated in the laboratory for studying the effect of environment change on the strength also. It has been found that the strength deterioration of improved soil in deep mixing method is due to 1) the ground environment change due to the secondary oxidation which results in low pH value and high organic content, and 2) the formations of the porous structures result from the elution of the calcium ions. Also, it has been found that the initial strength increase of the improved soil is related to the dissolved silica and that the dissolution of the silica in clay minerals needs long time. When examining the long-term strength for preventing strength degradation, the effect of environmental change has to be considered. The importance of measuring pH and oxidation-reduction potential (ORP) of the ground for cement/lime solidification method is explained.

关键词: soil solidification     ground environment     strength deterioration     pH     oxidation-reduction potential (ORP)     silica    

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 316-324 doi: 10.1007/s11709-013-0211-0

摘要: Three groups of concrete beams reinforced with high-strength steel bars were tested, and the crack width and deformation of the specimens were observed and studied. To facilitate the predictions, two simplified formulations according to a theory developed by the first author were proposed. The advantages of the formulations were verified by the test data and compared with several formulas in different codes.

关键词: concrete beam     high-strength steel bar     crack width     deformation    

Effect of size on biaxial flexural strength for cement-based materials by using a triangular plate method

Hakan T TURKER

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 1017-1028 doi: 10.1007/s11709-022-0871-8

摘要: The effect of size on the biaxial flexural strength (BFS) of Portland cement mortar was investigated by using the recently proposed triangular plate method (TPM). An experimental program was conceived to study the size effect by keeping a constant water-cement ratio of 0.485, cement-sand ratio of 1:2.75, and using unreinforced triangular mortar plates of five different thicknesses and seven different side lengths. The BFS of the produced specimens was tested, and variations of BFS depending on specimen thickness and side length were determined. The results indicated that increases in triangular plate specimen side length and specimen thickness led to a decrease in the BFS of Portland cement mortar. The effect of specimen length increase on BFS was more significant than on the effect of the specimen thickness. The variations in specimens’ thickness indicated a deterministic Type I size effect, while the variations in specimens’ length showed an energetic-statistical Type I size effect.

关键词: testing     apparatus & methods     plain concrete     tensile properties     biaxial flexural strength     triangular plate method    

Sensitivity analysis of the deterioration of concrete strength in marine environment to multiple corrosive

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 175-190 doi: 10.1007/s11709-021-0791-z

摘要: The corrosion degradation behavior of concrete materials plays a crucial role in the change of its mechanical properties under multi-ion interaction in the marine environment. In this study, the variation in the macro-physical and mechanical properties of concrete with corrosion time is investigated, and the source of micro-corrosion products under different salt solutions in seawater are analyzed. Regardless of the continuous hydration effect of concrete, the damage effects of various corrosive ions (Cl, SO42, and Mg2+, etc.) on the tensile and compressive strength of concrete are discussed based on measurement in different salt solutions. The sensitivity analysis method for concrete strength is used to quantitatively analyze the sensitivity of concrete strength to the effects of each ion in a multi-salt solution without considering the influence of continued hydration. The quantitative results indicate that the addition of Cl can weaken the corrosion effect of SO42 by about 20%, while the addition of Mg2+ or Mg2+ and Cl can strengthen it by 10%–20% during a 600-d corrosion process.

关键词: sensitivity analysis     concrete strength     corrosion deterioration     multi-ion interaction     marine environment    

Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine

Jinyuan SHI,Zhicheng DENG,Yong WANG,Yu YANG

《能源前沿(英文)》 2016年 第10卷 第1期   页码 88-104 doi: 10.1007/s11708-015-0387-1

摘要: The optimized structure strength design and finite element analysis method for very high pressure (VHP) rotors of the 700°C ultra-super-critical (USC) steam turbine are presented. The main parameters of steam and the steam thermal parameters of blade stages of VHP welded rotors as well as the start and shutdown curves of the steam turbine are determined. The structure design feature, the mechanical models and the typical position of stress analysis of the VHP welded rotors are introduced. The steady and transient finite element analysis are implemented for steady condition, start and shutdown process, including steady rated condition, 110% rated speed, 120% rated speed, cold start, warm start, hot start, very hot start, sliding-pressure shutdown, normal shutdown and emergency shutdown, to obtain the temperature and stress distribution as well as the stress ratio of the welded rotor. The strength design criteria and strength analysis results of the welded rotor are given. The results show that the strength design of improved structure of the VHP welded rotor of the 700°C USC steam turbine is safe at the steady condition and during the transient start or shutdown process.

关键词: 700°C ultra-super-critical unit     steam turbine     very high pressure rotor     structure strength design     strength design criteria     finite element analysis    

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 46-56 doi: 10.1007/s11709-014-0237-y

摘要: In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete beams in ultimate and service state. Six simply supported beams were tested, by applying comprising two symmetric concentrated loads. Tests are reported in this study on the flexural behavior of high-strength reinforced concrete (HSRC) beams made with coarse and fine aggregate together with Microsilica. Test parameter considered includes effect of being compressive reinforcement. Based on the obtained results, the behavior of such members is more deeply reviewed. Also a comparison between theoretical and experimental results is reported here. The beams were made from concrete having compressive strength of 66.81–77.72 N/mm and percentage reinforcement ratio ( / ) in the range of 0.56% – 1.20%. The ultimate moment for the tested beams was found to be in a good agreement with that of the predicted ultimate moment based on ACI 318-11, ACI 363 and CSA-04 provisions. The predicted deflection based classical formulation based on code provisions for serviceability requirements is found to underestimate the maximum deflection of HSC reinforced beams at service load.

关键词: high-strength concrete (HSC) members     flexural behavior     reinforced concrete     experimental results     ultimate moment    

Mechanical properties characterization of different types of masonry infill walls

André FURTADO, Hugo RODRIGUES, António ARÊDE, Humberto VARUM

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 411-434 doi: 10.1007/s11709-019-0602-y

摘要: It is remarkable, the recent advances concerning the development of numerical modeling frameworks to simulate the infill panels’ seismic behavior. However, there is a lack of experimental data of their mechanical properties, which are of full importance to calibrate the numerical models. The primary objective of this paper is to present an extensive experimental campaign of mechanical characterization tests of infill masonry walls made with three different types of masonry units: lightweight vertical hollow concrete blocks and hollow clay bricks. Four different types of experimental tests were carried out, namely: compression strength tests, diagonal tensile strength tests, and flexural strength tests parallel and perpendicular to the horizontal bed joints. A total amount of 80 tests were carried out and are reported in the present paper. The second objective of this study was to compare the mechanical properties of as-built and existing infill walls. The results presented and discussed herein, will be in terms of strain-stress curves and damages observed within the tests. It was observed a fragile behavior in the panels made with hollow clay horizontal bricks, without propagation of cracks. The plaster increased the flexural strength by 57%.

关键词: masonry infill walls     experimental characterization     compression strength     shear diagonal strength     flexural strength    

Enhancing compressive strength and durability of self-compacting concrete modified with controlled-burnt

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 161-174 doi: 10.1007/s11709-021-0796-7

摘要: In sugar industries, the growing amount of sugarcane bagasse ash (SBA), a byproduct released after burning bagasse for producing electricity, is currently causing environmental pollution. The residual ash displays a pozzolanic potential; and hence, it has potential as a cement addictive. This study focuses on enhancing suitability of SBA through incorporating ground blast furnace slag (BFS) in manufacturing self-compacting concretes (SCCs). For this purpose, SBA was processed by burning at 700 °C for 1 h, before being ground to the cement fineness of 4010 cm2/g. SCC mixtures were prepared by changing the proportions of SBA and BFS (i.e., 10%, 20%, and 30%) in blended systems; and their performance was investigated. Test results showed that the presence of amorphous silica was detected for the processed SBA, revealing that the strength activity index was above 80%. The compressive strength of SCC containing SBA (without BFS) could reach 98%−127% of that of the control; combination of SBA and 30% BFS gets a similar strength to the control after 28 d. Regarding durability, the 10%SBA + 30%BFS mix exhibited the lowest risk of corrosion. Moreover, the joint use of SBA and BFS enhanced significantly the SCC’s sulfate resistance. Finally, a hyperbolic formula for interpolating the compressive strength of the SBA-based SCC was proposed and validated with error range estimated within ±10%.

关键词: sugarcane bagasse ash     self-compacting concrete     compressive strength     sulfate resistance     water absorption     strength formula    

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1243-1250 doi: 10.1007/s11709-019-0553-3

摘要: Controlled low strength materials (CLSM) are flowable and self-compacting construction materials that have been used in a wide variety of applications. This paper describes the numerical modeling of CLSM fills with finite element method under compression loading and the bond performance of CLSM and steel rebar under pullout loading. The study was conducted using a plastic-damage model which captures the material behavior using both classical theory of elasto-plasticity and continuum damage mechanics. The capability of the finite element approach for the analysis of CLSM fills was assessed by a comparison with the experimental results from a laboratory compression test on CLSM cylinders and pullout tests. The analysis shows that the behavior of a CLSM fill while subject to a failure compression load or pullout tension load can be simulated in a reasonably accurate manner.

关键词: CLSM     finite element method     compressive strength     pullout     numerical modeling     plastic damage model    

Fresh and hardened properties of high-strength concrete incorporating byproduct fine crushed aggregate

Dammika P. K. WELLALA, Ashish Kumer SAHA, Prabir Kumar SARKER, Vinod RAJAYOGAN

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 124-135 doi: 10.1007/s11709-020-0673-9

摘要: This paper presents the fresh and hardened properties of high-strength concrete comprising byproduct fine crushed aggregates (FCAs) sourced from the crushing of three different types of rocks, namely granophyre, basalt, and granite. The lowest void contents of the combined fine aggregates were observed when 40% to 60% of natural sand is replaced by the FCAs. By the replacement of 40% FCAs, the slump and bleeding of concrete with a water-to-cement ratio of 0.45 decreased by approximately 15% and 50%, respectively, owing to the relatively high fines content of the FCAs. The 28 d compressive strength of concrete was 50 MPa when 40% FCAs were used. The slight decrease in tensile strength from the FCAs is attributed to the flakiness of the particles. The correlations between the splitting tensile and compressive strengths of normal concrete provided in the AS 3600 and ACI 318 design standards are applicable for concrete using the FCAs as partial replacement of sand. The maximum 56 d drying shrinkage is 520 microstrains, which is significantly less than the recommended limit of 1000 microstrains by AS 3600 for concrete. Therefore, the use of these byproduct FCAs can be considered as a sustainable alternative option for the production of high-strength green concrete.

关键词: fine crushed aggregates     quarry dust     compressive strength     splitting tensile strength     drying shrinkage    

标题 作者 时间 类型 操作

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

期刊论文

The effects of interfacial strength on fractured microcapsule

Luthfi Muhammad MAULUDIN, Chahmi OUCIF

期刊论文

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

期刊论文

The strength–dilatancy characteristics embraced in hypoplasticity

Zhongzhi FU, Sihong LIU, Zijian WANG

期刊论文

Slender reinforced concrete shear walls with high-strength concrete boundary elements

期刊论文

Effect of environment change on the strength of cement/lime treated clays

Takenori HINO, Rui JIA, Seiji SUEYOSHI, Tri HARIANTO

期刊论文

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

期刊论文

Effect of size on biaxial flexural strength for cement-based materials by using a triangular plate method

Hakan T TURKER

期刊论文

Sensitivity analysis of the deterioration of concrete strength in marine environment to multiple corrosive

期刊论文

Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine

Jinyuan SHI,Zhicheng DENG,Yong WANG,Yu YANG

期刊论文

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

期刊论文

Mechanical properties characterization of different types of masonry infill walls

André FURTADO, Hugo RODRIGUES, António ARÊDE, Humberto VARUM

期刊论文

Enhancing compressive strength and durability of self-compacting concrete modified with controlled-burnt

期刊论文

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

期刊论文

Fresh and hardened properties of high-strength concrete incorporating byproduct fine crushed aggregate

Dammika P. K. WELLALA, Ashish Kumer SAHA, Prabir Kumar SARKER, Vinod RAJAYOGAN

期刊论文