资源类型

期刊论文 478

年份

2023 46

2022 48

2021 30

2020 40

2019 30

2018 26

2017 20

2016 28

2015 18

2014 22

2013 13

2012 21

2011 24

2010 26

2009 19

2008 21

2007 19

2006 2

2005 2

2004 2

展开 ︾

关键词

SARS-CoV-2 2

中药 2

半旱地农业 2

地位 2

增材制造 2

天然气 2

油气资源 2

潜力 2

资源潜力 2

2D—3D配准 1

Pm21 1

Pm40 1

ADAM10抑制剂 1

CAR设计 1

CO2利用 1

COVID-19 1

Cuk矩阵变换器 1

GaAs基微结构材料 1

HEMTs);栅槽;数字湿法腐蚀;选择性湿法腐蚀 1

展开 ︾

检索范围:

排序: 展示方式:

Potential of electron transfer and its application in dictating routes of biochemical processes associated

《医学前沿(英文)》 2021年 第15卷 第5期   页码 679-692 doi: 10.1007/s11684-021-0866-1

摘要: Metabolic reprogramming, such as abnormal utilization of glucose, addiction to glutamine, and increased de-novo lipid synthesis, extensively occurs in proliferating cancer cells, but the underneath rationale has remained to be elucidated. Based on the concept of the degree of reduction of a compound, we have recently proposed a calculation termed as potential of electron transfer (PET), which is used to characterize the degree of electron redistribution coupled with metabolic transformations. When this calculation is combined with the assumed model of electron balance in a cellular context, the enforced selective reprogramming could be predicted by examining the net changes of the PET values associated with the biochemical pathways in anaerobic metabolism. Some interesting properties of PET in cancer cells were also discussed, and the model was extended to uncover the chemical nature underlying aerobic glycolysis that essentially results from energy requirement and electron balance. Enabling electron transfer could drive metabolic reprogramming in cancer metabolism. Therefore, the concept and model established on electron transfer could guide the treatment strategies of tumors and future studies on cellular metabolism.

关键词: metabolic reprogramming     potential of electron transfer     cell proliferation     aerobic glycolysis     cancer metabolism    

Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1486-3

摘要:

• Energy is needed to accelerate the biological wastewater treatment.

关键词: Biological wastewater treatment     Integrated energy view     Electroactive bacteria     Extracellular electron transfer    

Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1706-0

摘要:

● A CNT filter enabled effective KMnO4 activation via facilitated electron transfer.

关键词: KMnO4     Carbon nanotubes     Non-radical pathway     Electron transfer     Water treatment    

precise-acting” strategies for improving anaerobic methanogenesis of organic waste: Insights from the electrontransfer system of syntrophic partners

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1508-1

摘要: Methanogenesis is the last step in anaerobic digestion, which is usually a rate-limiting step in the biological treatment of organic waste. The low methanogenesis efficiency (low methane production rate, low methane yield, low methane content) substantially limits the development of anaerobic digestion technology. Traditional pretreatment methods and bio-stimulation strategies have impacts on the entire anaerobic system and cannot directly enhance methanogenesis in a targeted manner, which was defined as “broad-acting” strategies in this perspective. Further, we discussed our opinion of methanogenesis process with insights from the electron transfer system of syntrophic partners and provided potential targeted enhancing strategy for high-efficiency electron transfer system. These “precise-acting” strategies are expected to achieve an efficient methanogenesis process and enhance the bio-energy recovery of organic waste.

关键词: Methanogenesis     Anaerobic digestion     Enhancing strategy     Electron transfer     Organic waste    

Mechanisms behind the accelerated extracellular electron transfer in

Feng ZHANG,Shengsong YU,Jie LI,Wenwei LI,Hanqing YU

《环境科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 531-538 doi: 10.1007/s11783-015-0793-y

摘要: Modification of electrode surface with carboxylic acid terminated alkanethiol self-assembled monolayers (SAMs) has been found to be an effective approach to improve the extracellular electron transfer (EET) of electrochemically active bacteria (EAB) on electrode surface, but the underlying mechanism behind such enhanced EET remains unclear. In this work, the gold electrodes modified by mercapto-acetic acid and mercapto-ethylamine (Au-COOH, Au-NH ) were used as anodes in microbial electrolysis cells (MECs) inoculated with DL-1, and their electrochemical performance and the bacteria-electrode interactions were investigated. Results showed that the redox reaction occurred on the Au-NH with a higher rate and a lower resistance than that on the Au or the Au-COOH. Both the MECs with the Au-COOH and Au-NH anodes exhibited a higher current density than that with a bare Au anode. The biofilm formed on the Au-COOH was denser than that on bare Au, while the biofilm on the Au-NH had a greater thickness, suggesting a critical role of direct EET in this system. This work suggests that functional groups such as –COOH and-NH could promote electrode performance by accelerating the direct EET of EAB on electrode surface.

关键词: biofilm     extracellular electron transfer (EET)     Geobacter sulfurreducens DL-1     gold     self-assembled monolayers    

Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1498-z

摘要:

• The autotrophic nitrogen removal combining Feammox and Anammox was achieved.

关键词: Feammox     Anammox     Extracellular electron transfer     Electron shuttle     Activated carbon    

4-Amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) pH sensors as liposomal

Miguel Martínez-Calvo, Sandra A. Bright, Emma B. Veale, Adam F. Henwood, D. Clive Williams, Thorfinnur Gunnlaugsson

《化学科学与工程前沿(英文)》 2020年 第14卷 第1期   页码 61-75 doi: 10.1007/s11705-019-1862-8

摘要: Four new fluorescent sensors ( - ) based on the 4-amino-1,8-naphthalimide fluorophores ( ) have been synthesized based on the classical fluorophore-spacer-receptor model. These four compounds all gave rise to emission bands centred at 535 nm, which were found to be highly pH dependent, the emission being ‘switched on’ in acidic media, while being quenched due to PET from the amino moieties to the excited state of the at more alkaline pH. The luminescent pH dependence for these probes was found to be highly dependent on the substitution on the imide site, as well as the polyamine chain attached to the position 4-amino moiety. In the case of sensor the presence of the 4-amino-aniline dominated the pH dependent quenching. Nevertheless, at higher pH, PET quenching was also found to occur from the polyamine site. Hence, is better described as a receptor -spacer -fluorophore-spacer -receptor system, where the dominant PET process is due to (normally less favourable) ‘directional’ PET quenching from the 4-amino-aniline unit to the site. Similar trends and pH fluorescence dependences were also seen for and . These compounds were also tested for their imaging potential and toxicity against HeLa cells (using DRAQ5 as nuclear stain which does now show pH dependent changes in acidic and neutral pH) and the results demonstrated that these compounds have reduced cellular viability at moderately high concentrations (with IC values between ca. 8‒30 µmol∙L ), but were found to be suitable for intracellular pH determination at 1 µmol∙L concentrations, where no real toxicity was observed. This allowed us to employ these as lysosomal probes at sub-toxic concentrations, where the based emission was found to be pH depended, mirroring that seen in aqueous solution for , with the main fluorescence changes occurring within acidic to neutral pH.

关键词: sensors     pH     photoinduced electron transfer     cellular imaging     confocal microscopy    

Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm

Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1236-y

摘要: • Fe(III) accepted the most electrons from organics, followed by NO3‒, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3‒ with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.

关键词: Constructed wetland     Sulfur cycle     Electron transfer     Denitrification    

Synthesis, spectroscopic, and electrochemical properties of two dyads consisted of tetrathiafulvalene and carbazole

Guoqiao LAI, Yibo LIU, Meijiang LI, Yongjia SHEN

《化学科学与工程前沿(英文)》 2009年 第3卷 第2期   页码 192-195 doi: 10.1007/s11705-009-0015-x

摘要: Two donor-σ-acceptor molecules containing tetrathiafulvalene (TTF) and carbazole moieties were synthesized by the reaction of 9-(4-bromo-butyl)-carbazole ( ) with 2,6-bis(hexylthio)-3-(2-cyanoethylthio)-7-(methylthio)-tetrathiafulvalene ( ) or 2,6-bis(2-cyanoethylthio)-3,7-bis(methylthio)tetrathiafulvalene ( ) in the presence of CsOH·H O, respectively. The structures of the molecules were characterized by H NMR, C NMR, MS, and elemental analyses. They showed negligible intramolecular charge-transfer interaction in their ground states as indicated by their UV-Vis spectroscopics and cyclic voltammetry results. Compared with carbazole, their fluorescence was strongly quenched, which implied that a photo induced electron transfer (PET) interaction between TTF and carbazole moieties occurred.

关键词: donor-σ-acceptor molecule     intramolecular charge transfer interaction     photo induced electron transfer     tetrathiafulvalene     carbazole    

Electroactivity of the magnetotactic bacteria AMB-1 and MSR-1

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1808-3

摘要:

● The first study of electrochemically active magnetotactic bacteria.

关键词: Magnetotactic bacteria     Magnetospirillum magneticum     Magnetospirillum gryphiswaldense     Extracellular electron transfer     Microbial fuel cells    

Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways, and mechanism

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1715-z

摘要:

● N2H4 addition enhanced and recovered anammox performance under Cr(VI) stress.

关键词: Extracellular Cr(VI) reduction     Electron transfer     Anammox     Hydrazine     Cr(VI) inhibition    

Enhanced 4-chlorophenol biodegradation by integrating FeO nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1519-6

摘要:

• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system.

关键词: Dechlorination     Fe2O3 nanoparticles     Electron transfer     Microbial community    

Dual-reaction-center catalytic process continues Fenton’s story

Chao Lu, Kanglan Deng, Chun Hu, Lai Lyu

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1261-x

摘要: Abstract • Dual-reaction-center (DRC) system breaks through bottleneck of Fenton reaction. • Utilization of intrinsic electrons of pollutants is realized in DRC system. • DRC catalytic process well continues Fenton’s story. Triggered by global water quality safety issues, the research on wastewater treatment and water purification technology has been greatly developed in recent years. The Fenton technology is particularly powerful due to the rapid attack on pollutants by the generated hydroxyl radicals (•OH). However, both heterogeneous and homogeneous Fenton/Fenton-like technologies follow the classical reaction mechanism, which depends on the oxidation and reduction of the transition metal ions at single sites. So even after a century of development, this reaction still suffers from its inherent bottlenecks in practical application. In recent years, our group has been focusing on studying a novel heterogeneous Fenton catalytic process, and we developed the dual-reaction-center (DRC) system for the first time. In the DRC system, H2O2 and O2 can be efficiently reduced to reactive oxygen species (ROS) in electron-rich centers, while pollutants are captured and oxidized by the electron-deficient centers. The obtained electrons from pollutants are diverted to the electron-rich centers through bonding bridges. This process breaks through the classic Fenton mechanism, and improves the performance and efficiency of pollutant removal in a wide pH range. Here, we provide a brief overview of Fenton’s story and focus on combing the discovery and development of the DRC technology and mechanism in recent years. The construction of the DRC and its performance in the pollutant degradation and interfacial reaction process are described in detail. We look forward to bringing a new perspective to continue Fenton’s story through research and development of DRC technology.

关键词: Dual reaction centers     Fenton     Pollutant utilization     Electron transfer    

Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents

Weixing Deng, Pengfei Sun, Quli Fan, Lei Zhang, Tsuyoshi Minami

《化学科学与工程前沿(英文)》 2020年 第14卷 第1期   页码 105-111 doi: 10.1007/s11705-019-1791-6

摘要: The synthesis of -cyclohexyl carbamate-attached fluorene- -phenylene copolymer (PFPNCC) and the use of PFPNCC as a “ligand-free” fluorescent chemosensor for Cu(II) are described. Addition of Cu(II) can efficiently quench the fluorescence of PFPNCC in nucleophilic solvents such as DMF and DMSO, but not in low nucleophilic solvents such as 1,4-dioxane and THF. Ultraviolet-visible spectra of the mixture of the conjugated polymer and Cu(II) indicate the presence of a reduced Cu(I) ion in the solution. Furthermore, fluorescence recovery of PFPNCC observed at low temperature suggests that the quenching and reducing mechanism is most probably due to a photo-induced electron transfer from excited PFPNCC to Cu(II). Our findings provide a novel strategy for highly selective conjugated polymer-based chemosensors for various target analytes, albeit “ligand-free”.

关键词: ligand-free     fluorescent chemosensor     copper     photo-induced electron transfer    

Kinetics and mechanisms of reactions for hydrated electron with chlorinated benzenes in aqueous solution

Haixia YUAN,Huxiang PAN,Jin SHI,Hongjing LI,Wenbo DONG

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 583-590 doi: 10.1007/s11783-014-0691-8

摘要: The reactions between chlorinated benzenes (CBzs) and hydrated electron ( ) were investigated by the electron beam (EB) and laser flash photolysis (LFP) experiments. Under the EB irradiation, the effects of irradiation dose, initial concentration and the number of Cl atoms on the removal efficiencies were further examined. At 10 kGy, the removal efficiencies of mono-CB, 1,3-diCB, 1,2-diCB and 1,4-diCB were 41.2%, 87.2%, 84.0%, and 84.1%, respectively. While irradiation dose was 50 kGy, the removal efficiencies increased to 47.4%, 95.8%, 95.0%, and 95.2%, respectively. Irradiation of CBzs solutions has shown that the higher the initial concentration, the lower the percentage of CBzs removal. In addition to this, the dechlorination efficiencies of 1,2-dichlorobenzene (1,2-diCB), 1,3-dichlorobenzene (1,3-diCB) and 1,4-dichlorobenzene (1,4-diCB) were much higher than that of chlorobenzene (mono-CB). The kinetics of the reactions was achieved with nanosecond LFP. The rate constants of second-order reaction between with mono-CB, 1,2-diCB, 1,3-diCB and 1,4-diCB were (5.3±0.4) × 10 , (4.76±0.1) × 10 , (1.01±0.1) × 10 and (3.29±0.2) × 10 L·mol ·s , respectively. Density functional theory (DFT) calculations were performed to determine the optical properties of unstable CBzs anion radicals, and the main absorption peaks lied in the range of 300–550 nm. The primary reaction pathway of CBzs with was gradual dechlorination, and the major products were Cl and benzene (CBzs(-Cl )). Furthermore, biphenyl (or chlorobiphenyl) was observed during the LFP, which was probably formed by recombination of benzene radicals.

关键词: chlorinated benzenes     hydrated electron     electron beam     laser flash photolysis    

标题 作者 时间 类型 操作

Potential of electron transfer and its application in dictating routes of biochemical processes associated

期刊论文

Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation

期刊论文

Insights into the electron transfer mechanisms of permanganate activation by carbon nanotube membrane

期刊论文

precise-acting” strategies for improving anaerobic methanogenesis of organic waste: Insights from the electrontransfer system of syntrophic partners

期刊论文

Mechanisms behind the accelerated extracellular electron transfer in

Feng ZHANG,Shengsong YU,Jie LI,Wenwei LI,Hanqing YU

期刊论文

Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic

期刊论文

4-Amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) pH sensors as liposomal

Miguel Martínez-Calvo, Sandra A. Bright, Emma B. Veale, Adam F. Henwood, D. Clive Williams, Thorfinnur Gunnlaugsson

期刊论文

Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm

Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou

期刊论文

Synthesis, spectroscopic, and electrochemical properties of two dyads consisted of tetrathiafulvalene and carbazole

Guoqiao LAI, Yibo LIU, Meijiang LI, Yongjia SHEN

期刊论文

Electroactivity of the magnetotactic bacteria AMB-1 and MSR-1

期刊论文

Enhancement of extracellular Cr(VI) reduction for anammox recovery using hydrazine: performance, pathways, and mechanism

期刊论文

Enhanced 4-chlorophenol biodegradation by integrating FeO nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism

期刊论文

Dual-reaction-center catalytic process continues Fenton’s story

Chao Lu, Kanglan Deng, Chun Hu, Lai Lyu

期刊论文

Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents

Weixing Deng, Pengfei Sun, Quli Fan, Lei Zhang, Tsuyoshi Minami

期刊论文

Kinetics and mechanisms of reactions for hydrated electron with chlorinated benzenes in aqueous solution

Haixia YUAN,Huxiang PAN,Jin SHI,Hongjing LI,Wenbo DONG

期刊论文